1
0
mirror of https://github.com/veracrypt/VeraCrypt.git synced 2025-11-12 03:18:26 -06:00

Add support for SHA-256 x86 instrinsic for enhance performance of PBKDF2-HMAC-SHA256

This commit is contained in:
Mounir IDRASSI
2024-11-10 21:08:00 +01:00
parent fcc0c82836
commit 04c747fb2d
17 changed files with 334 additions and 3 deletions

View File

@@ -223,6 +223,7 @@
<ClCompile Include="SerpentFast.c" />
<ClCompile Include="SerpentFast_simd.cpp" />
<ClCompile Include="Sha2.c" />
<ClCompile Include="Sha2Intel.c" />
<ClCompile Include="Streebog.c" />
<ClCompile Include="t1ha2.c" />
<ClCompile Include="t1ha2_selfcheck.c" />

View File

@@ -87,6 +87,9 @@
<ClCompile Include="blake2s_SSSE3.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="Sha2Intel.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="Aes.h">

View File

@@ -339,6 +339,7 @@
<ClCompile Include="SerpentFast.c" />
<ClCompile Include="SerpentFast_simd.cpp" />
<ClCompile Include="Sha2.c" />
<ClCompile Include="Sha2Intel.c" />
<ClCompile Include="Streebog.c" />
<ClCompile Include="t1ha2.c" />
<ClCompile Include="t1ha2_selfcheck.c" />

View File

@@ -306,6 +306,9 @@ extern "C"
void sha256_sse4(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_rorx(void *input_data, uint_32t digest[8], uint_64t num_blks);
void sha256_avx(void *input_data, uint_32t digest[8], uint_64t num_blks);
#if CRYPTOPP_SHANI_AVAILABLE
void sha256_intel(void *input_data, uint_32t digest[8], uint_64t num_blks);
#endif
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32
@@ -717,6 +720,13 @@ void StdSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
#if CRYPTOPP_SHANI_AVAILABLE
void IntelSha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
sha256_intel(mp, ctx->hash, num_blks);
}
#endif
void Avx2Sha256Transform(sha256_ctx* ctx, void* mp, uint_64t num_blks)
{
if (num_blks > 1)
@@ -775,6 +785,11 @@ void sha256_begin(sha256_ctx* ctx)
{
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_BOOL_X64
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA256())
sha256transfunc = IntelSha256Transform;
else
#endif
if (g_isIntel && HasSAVX2() && HasSBMI2())
sha256transfunc = Avx2Sha256Transform;
else if (g_isIntel && HasSAVX())

218
src/Crypto/Sha2Intel.c Normal file
View File

@@ -0,0 +1,218 @@
/*
* Support for SHA-256 x86 instrinsic
* Based on public domain code by Sean Gulley
* (https://github.com/mitls/hacl-star/tree/master/experimental/hash)
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
/* November 10th 2024: Modified for VeraCrypt */
#include "Sha2.h"
#include "Common/Endian.h"
#include "cpu.h"
#include "misc.h"
#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
#define NO_OPTIMIZED_VERSIONS
#endif
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_SHANI_AVAILABLE
//
void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks)
{
// Constants table - align for better performance
CRYPTOPP_ALIGN_DATA(64)
static const uint_32t K[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
const __m128i* K_mm = (const __m128i*)K;
const __m128i* input_mm = (const __m128i*)mp;
// Create byte shuffle mask for big-endian to little-endian conversion
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203);
// Load initial values
__m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]);
__m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]);
// Adjust byte ordering
STATE0 = _mm_shuffle_epi32(STATE0, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
__m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0); // CDGH
STATE0 = TMP;
while(num_blks > 0) {
// Save current state
const __m128i ABEF_SAVE = STATE0;
const __m128i CDGH_SAVE = STATE1;
__m128i MSG;
__m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK);
__m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK);
__m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK);
__m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK);
// Rounds 0-3
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
// Rounds 4-7
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
input_mm += 4;
num_blks--;
}
// Shuffle state back to correct order
STATE0 = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
// Save state
_mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0)); // DCBA
_mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8)); // HGFE
}
#endif
#endif

View File

@@ -39,6 +39,7 @@ SOURCES = \
SerpentFast.c \
SerpentFast_simd.cpp \
Sha2.c \
Sha2Intel.c \
t1ha_selfcheck.c \
t1ha2.c \
t1ha2_selfcheck.c \

View File

@@ -152,6 +152,15 @@
#define CRYPTOPP_BOOL_SSE41_INTRINSICS_AVAILABLE 0
#endif
#if !defined(CRYPTOPP_DISABLE_SHANI) && !defined(_M_ARM) && !defined(_M_ARM64) && !defined(__arm__) && !defined(__aarch64__) && !defined(__arm64__) && defined(CRYPTOPP_BOOL_SSE41_INTRINSICS_AVAILABLE) && \
(defined(__SHA__) || (_MSC_VER >= 1900) || (__SUNPRO_CC >= 0x5160) || \
(CRYPTOPP_GCC_VERSION >= 40900) || (__INTEL_COMPILER >= 1600) || \
(CRYPTOPP_LLVM_CLANG_VERSION >= 30400) || (CRYPTOPP_APPLE_CLANG_VERSION >= 50100))
#define CRYPTOPP_SHANI_AVAILABLE 1
#else
#define CRYPTOPP_SHANI_AVAILABLE 0
#endif
// how to allocate 16-byte aligned memory (for SSE2)
#if defined(_MSC_VER)
#define CRYPTOPP_MM_MALLOC_AVAILABLE

View File

@@ -17,6 +17,10 @@
#ifdef CRYPTOPP_CPUID_AVAILABLE
#if defined(__GNUC__) || defined(__clang__)
#include <cpuid.h> // for __get_cpuid and __get_cpuid_count
#endif
#if _MSC_VER >= 1400 && CRYPTOPP_BOOL_X64
int CpuId(uint32 input, uint32 output[4])
@@ -207,6 +211,7 @@ volatile int g_x86DetectionDone = 0;
volatile int g_hasISSE = 0, g_hasSSE2 = 0, g_hasSSSE3 = 0, g_hasMMX = 0, g_hasAESNI = 0, g_hasCLMUL = 0, g_isP4 = 0;
volatile int g_hasAVX = 0, g_hasAVX2 = 0, g_hasBMI2 = 0, g_hasSSE42 = 0, g_hasSSE41 = 0, g_isIntel = 0, g_isAMD = 0;
volatile int g_hasRDRAND = 0, g_hasRDSEED = 0;
volatile int g_hasSHA256 = 0;
volatile uint32 g_cacheLineSize = CRYPTOPP_L1_CACHE_LINE_SIZE;
VC_INLINE int IsIntel(const uint32 output[4])
@@ -306,6 +311,35 @@ static int Detect_MS_HyperV_AES ()
#endif
static BOOL CheckSHA256Support() {
#if CRYPTOPP_BOOL_X64 && CRYPTOPP_SHANI_AVAILABLE
#if defined(_MSC_VER) // Windows with MSVC
int cpuInfo[4] = { 0 };
__cpuidex(cpuInfo, 7, 0);
return (cpuInfo[1] & (1 << 29)) != 0? TRUE : FALSE;
#elif defined(__GNUC__) || defined(__clang__) // Linux, FreeBSD, macOS with GCC/Clang
unsigned int eax = 0, ebx = 0, ecx = 0, edx = 0;
// First check if CPUID leaf 7 is supported
if (__get_cpuid(0, &eax, &ebx, &ecx, &edx)) {
if (eax >= 7) {
// Now check SHA-256 support in leaf 7, sub-leaf 0
if (__get_cpuid_count(7, 0, &eax, &ebx, &ecx, &edx)) {
return (ebx & (1 << 29)) != 0? TRUE : FALSE;
}
}
}
return FALSE;
#else
#error "Unsupported compiler"
#endif
#else
return FALSE;
#endif
}
void DetectX86Features()
{
uint32 cpuid[4] = {0}, cpuid1[4] = {0}, cpuid2[4] = {0};
@@ -334,6 +368,7 @@ void DetectX86Features()
g_hasAESNI = g_hasSSE2 && (cpuid1[2] & (1<<25));
#endif
g_hasCLMUL = g_hasSSE2 && (cpuid1[2] & (1<<1));
g_hasSHA256 = CheckSHA256Support();
#if !defined (_UEFI) && ((defined(__AES__) && defined(__PCLMUL__)) || defined(__INTEL_COMPILER) || CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE)
// Hypervisor = bit 31 of ECX of CPUID leaf 0x1
@@ -439,6 +474,7 @@ void DisableCPUExtendedFeatures ()
g_hasSSSE3 = 0;
g_hasAESNI = 0;
g_hasCLMUL = 0;
g_hasSHA256 = 0;
}
#endif

View File

@@ -207,6 +207,22 @@ extern __m128i _mm_aesdeclast_si128(__m128i v, __m128i rkey);
#endif
#endif
#if CRYPTOPP_SHANI_AVAILABLE
#if defined(TC_WINDOWS_DRIVER) || defined (_UEFI)
#if defined(__cplusplus)
extern "C" {
#endif
extern __m128i __cdecl _mm_sha256msg1_epu32(__m128i, __m128i);
extern __m128i __cdecl _mm_sha256msg2_epu32(__m128i, __m128i);
extern __m128i __cdecl _mm_sha256rnds2_epu32(__m128i, __m128i, __m128i);
#if defined(__cplusplus)
}
#endif
#else
#include <immintrin.h>
#endif
#endif
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
#if defined(__cplusplus)
@@ -234,6 +250,7 @@ extern volatile int g_hasCLMUL;
extern volatile int g_isP4;
extern volatile int g_hasRDRAND;
extern volatile int g_hasRDSEED;
extern volatile int g_hasSHA256;
extern volatile int g_isIntel;
extern volatile int g_isAMD;
extern volatile uint32 g_cacheLineSize;
@@ -262,6 +279,7 @@ void DisableCPUExtendedFeatures ();
#define IsP4() g_isP4
#define HasRDRAND() g_hasRDRAND
#define HasRDSEED() g_hasRDSEED
#define HasSHA256() g_hasSHA256
#define IsCpuIntel() g_isIntel
#define IsCpuAMD() g_isAMD
#define GetCacheLineSize() g_cacheLineSize