1
0
mirror of https://github.com/veracrypt/VeraCrypt.git synced 2025-11-11 11:08:02 -06:00

Add support for SHA-256 x86 instrinsic for enhance performance of PBKDF2-HMAC-SHA256

This commit is contained in:
Mounir IDRASSI
2024-11-10 21:08:00 +01:00
parent fcc0c82836
commit 04c747fb2d
17 changed files with 334 additions and 3 deletions

218
src/Crypto/Sha2Intel.c Normal file
View File

@@ -0,0 +1,218 @@
/*
* Support for SHA-256 x86 instrinsic
* Based on public domain code by Sean Gulley
* (https://github.com/mitls/hacl-star/tree/master/experimental/hash)
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
/* November 10th 2024: Modified for VeraCrypt */
#include "Sha2.h"
#include "Common/Endian.h"
#include "cpu.h"
#include "misc.h"
#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
#define NO_OPTIMIZED_VERSIONS
#endif
#ifndef NO_OPTIMIZED_VERSIONS
#if CRYPTOPP_SHANI_AVAILABLE
//
void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks)
{
// Constants table - align for better performance
CRYPTOPP_ALIGN_DATA(64)
static const uint_32t K[64] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
const __m128i* K_mm = (const __m128i*)K;
const __m128i* input_mm = (const __m128i*)mp;
// Create byte shuffle mask for big-endian to little-endian conversion
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203);
// Load initial values
__m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]);
__m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]);
// Adjust byte ordering
STATE0 = _mm_shuffle_epi32(STATE0, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
__m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0); // CDGH
STATE0 = TMP;
while(num_blks > 0) {
// Save current state
const __m128i ABEF_SAVE = STATE0;
const __m128i CDGH_SAVE = STATE1;
__m128i MSG;
__m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK);
__m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK);
__m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK);
__m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK);
// Rounds 0-3
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
// Rounds 4-7
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
input_mm += 4;
num_blks--;
}
// Shuffle state back to correct order
STATE0 = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
// Save state
_mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0)); // DCBA
_mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8)); // HGFE
}
#endif
#endif