mirror of
https://github.com/veracrypt/VeraCrypt.git
synced 2025-11-11 19:08:26 -06:00
Remove trailing whitespace
This commit is contained in:
@@ -63,26 +63,26 @@ static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };
|
||||
static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
|
||||
static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };
|
||||
|
||||
static u1byte qt0[2][16] =
|
||||
static u1byte qt0[2][16] =
|
||||
{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
|
||||
{ 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
|
||||
};
|
||||
|
||||
static u1byte qt1[2][16] =
|
||||
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
|
||||
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
|
||||
{ 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
|
||||
};
|
||||
|
||||
static u1byte qt2[2][16] =
|
||||
static u1byte qt2[2][16] =
|
||||
{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
|
||||
{ 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
|
||||
};
|
||||
|
||||
static u1byte qt3[2][16] =
|
||||
static u1byte qt3[2][16] =
|
||||
{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
|
||||
{ 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
|
||||
};
|
||||
|
||||
|
||||
static u1byte qp(const u4byte n, const u1byte x)
|
||||
{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;
|
||||
|
||||
@@ -105,7 +105,7 @@ static void gen_qtab(void)
|
||||
{ u4byte i;
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
{
|
||||
q(0,i) = qp(0, (u1byte)i);
|
||||
q(1,i) = qp(1, (u1byte)i);
|
||||
}
|
||||
@@ -124,7 +124,7 @@ static u4byte m_tab[4][256];
|
||||
|
||||
static void gen_mtab(void)
|
||||
{ u4byte i, f01, f5b, fef;
|
||||
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
|
||||
@@ -254,12 +254,12 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
|
||||
mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
|
||||
#else
|
||||
sb[0][i] = q20(by); sb[1][i] = q21(by);
|
||||
sb[0][i] = q20(by); sb[1][i] = q21(by);
|
||||
sb[2][i] = q22(by); sb[3][i] = q23(by);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case 3: for(i = 0; i < 256; ++i)
|
||||
{
|
||||
by = (u1byte)i;
|
||||
@@ -267,12 +267,12 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
|
||||
mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
|
||||
#else
|
||||
sb[0][i] = q30(by); sb[1][i] = q31(by);
|
||||
sb[0][i] = q30(by); sb[1][i] = q31(by);
|
||||
sb[2][i] = q32(by); sb[3][i] = q33(by);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
case 4: for(i = 0; i < 256; ++i)
|
||||
{
|
||||
by = (u1byte)i;
|
||||
@@ -280,7 +280,7 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
|
||||
mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
|
||||
#else
|
||||
sb[0][i] = q40(by); sb[1][i] = q41(by);
|
||||
sb[0][i] = q40(by); sb[1][i] = q41(by);
|
||||
sb[2][i] = q42(by); sb[3][i] = q43(by);
|
||||
#endif
|
||||
}
|
||||
@@ -315,22 +315,22 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
|
||||
where the coefficients are in the finite field GF(2^8) with a
|
||||
modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
|
||||
remainder we have to start with a 12th order polynomial with our
|
||||
eight input bytes as the coefficients of the 4th to 11th terms.
|
||||
eight input bytes as the coefficients of the 4th to 11th terms.
|
||||
That is:
|
||||
|
||||
m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
|
||||
|
||||
|
||||
We then multiply the generator polynomial by m[7] * x^7 and subtract
|
||||
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
|
||||
artihmetic on the coefficients is done in GF(2^8). We then multiply
|
||||
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
|
||||
artihmetic on the coefficients is done in GF(2^8). We then multiply
|
||||
the generator polynomial by x^6 * coeff(x^10) and use this to remove
|
||||
the x^10 term. We carry on in this way until the x^4 term is removed
|
||||
so that we are left with:
|
||||
|
||||
r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
|
||||
|
||||
which give the resulting 4 bytes of the remainder. This is equivalent
|
||||
to the matrix multiplication in the Twofish description but much faster
|
||||
which give the resulting 4 bytes of the remainder. This is equivalent
|
||||
to the matrix multiplication in the Twofish description but much faster
|
||||
to implement.
|
||||
|
||||
*/
|
||||
@@ -343,23 +343,23 @@ static u4byte mds_rem(u4byte p0, u4byte p1)
|
||||
for(i = 0; i < 8; ++i)
|
||||
{
|
||||
t = p1 >> 24; // get most significant coefficient
|
||||
|
||||
|
||||
p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up
|
||||
|
||||
|
||||
// multiply t by a (the primitive element - i.e. left shift)
|
||||
|
||||
u = (t << 1);
|
||||
|
||||
u = (t << 1);
|
||||
|
||||
if(t & 0x80) // subtract modular polynomial on overflow
|
||||
|
||||
u ^= G_MOD;
|
||||
|
||||
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
|
||||
u ^= G_MOD;
|
||||
|
||||
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
|
||||
|
||||
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
|
||||
|
||||
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
|
||||
|
||||
if(t & 0x01) // add the modular polynomial on underflow
|
||||
|
||||
|
||||
u ^= G_MOD >> 1;
|
||||
|
||||
p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
|
||||
@@ -445,7 +445,7 @@ void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[4]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[5]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[6]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
};
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
@@ -477,7 +477,7 @@ void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[4]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[5]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[6]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
};
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
@@ -511,7 +511,7 @@ void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[0]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[1]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[2]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
};
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
@@ -543,7 +543,7 @@ void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[0]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[1]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[2]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
};
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
Reference in New Issue
Block a user