1
0
mirror of https://github.com/veracrypt/VeraCrypt.git synced 2025-11-11 19:08:26 -06:00

Remove trailing whitespace

This commit is contained in:
David Foerster
2016-05-10 22:16:32 +02:00
parent 1910751558
commit 11716ed2da
408 changed files with 4420 additions and 4420 deletions

View File

@@ -63,26 +63,26 @@ static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };
static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };
static u1byte qt0[2][16] =
static u1byte qt0[2][16] =
{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
{ 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
};
static u1byte qt1[2][16] =
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
{ 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
};
static u1byte qt2[2][16] =
static u1byte qt2[2][16] =
{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
{ 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
};
static u1byte qt3[2][16] =
static u1byte qt3[2][16] =
{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
{ 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
};
static u1byte qp(const u4byte n, const u1byte x)
{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;
@@ -105,7 +105,7 @@ static void gen_qtab(void)
{ u4byte i;
for(i = 0; i < 256; ++i)
{
{
q(0,i) = qp(0, (u1byte)i);
q(1,i) = qp(1, (u1byte)i);
}
@@ -124,7 +124,7 @@ static u4byte m_tab[4][256];
static void gen_mtab(void)
{ u4byte i, f01, f5b, fef;
for(i = 0; i < 256; ++i)
{
f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
@@ -254,12 +254,12 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
#else
sb[0][i] = q20(by); sb[1][i] = q21(by);
sb[0][i] = q20(by); sb[1][i] = q21(by);
sb[2][i] = q22(by); sb[3][i] = q23(by);
#endif
}
break;
case 3: for(i = 0; i < 256; ++i)
{
by = (u1byte)i;
@@ -267,12 +267,12 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
#else
sb[0][i] = q30(by); sb[1][i] = q31(by);
sb[0][i] = q30(by); sb[1][i] = q31(by);
sb[2][i] = q32(by); sb[3][i] = q33(by);
#endif
}
break;
case 4: for(i = 0; i < 256; ++i)
{
by = (u1byte)i;
@@ -280,7 +280,7 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
#else
sb[0][i] = q40(by); sb[1][i] = q41(by);
sb[0][i] = q40(by); sb[1][i] = q41(by);
sb[2][i] = q42(by); sb[3][i] = q43(by);
#endif
}
@@ -315,22 +315,22 @@ static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
where the coefficients are in the finite field GF(2^8) with a
modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
remainder we have to start with a 12th order polynomial with our
eight input bytes as the coefficients of the 4th to 11th terms.
eight input bytes as the coefficients of the 4th to 11th terms.
That is:
m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
We then multiply the generator polynomial by m[7] * x^7 and subtract
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
artihmetic on the coefficients is done in GF(2^8). We then multiply
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
artihmetic on the coefficients is done in GF(2^8). We then multiply
the generator polynomial by x^6 * coeff(x^10) and use this to remove
the x^10 term. We carry on in this way until the x^4 term is removed
so that we are left with:
r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
which give the resulting 4 bytes of the remainder. This is equivalent
to the matrix multiplication in the Twofish description but much faster
which give the resulting 4 bytes of the remainder. This is equivalent
to the matrix multiplication in the Twofish description but much faster
to implement.
*/
@@ -343,23 +343,23 @@ static u4byte mds_rem(u4byte p0, u4byte p1)
for(i = 0; i < 8; ++i)
{
t = p1 >> 24; // get most significant coefficient
p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up
// multiply t by a (the primitive element - i.e. left shift)
u = (t << 1);
u = (t << 1);
if(t & 0x80) // subtract modular polynomial on overflow
u ^= G_MOD;
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
u ^= G_MOD;
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
if(t & 0x01) // add the modular polynomial on underflow
u ^= G_MOD >> 1;
p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
@@ -445,7 +445,7 @@ void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
out_blk[0] = LE32(blk[2] ^ l_key[4]);
out_blk[1] = LE32(blk[3] ^ l_key[5]);
out_blk[2] = LE32(blk[0] ^ l_key[6]);
out_blk[3] = LE32(blk[1] ^ l_key[7]);
out_blk[3] = LE32(blk[1] ^ l_key[7]);
};
#else // TC_MINIMIZE_CODE_SIZE
@@ -477,7 +477,7 @@ void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
out_blk[0] = LE32(blk[2] ^ l_key[4]);
out_blk[1] = LE32(blk[3] ^ l_key[5]);
out_blk[2] = LE32(blk[0] ^ l_key[6]);
out_blk[3] = LE32(blk[1] ^ l_key[7]);
out_blk[3] = LE32(blk[1] ^ l_key[7]);
};
#endif // TC_MINIMIZE_CODE_SIZE
@@ -511,7 +511,7 @@ void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
out_blk[0] = LE32(blk[2] ^ l_key[0]);
out_blk[1] = LE32(blk[3] ^ l_key[1]);
out_blk[2] = LE32(blk[0] ^ l_key[2]);
out_blk[3] = LE32(blk[1] ^ l_key[3]);
out_blk[3] = LE32(blk[1] ^ l_key[3]);
};
#else // TC_MINIMIZE_CODE_SIZE
@@ -543,7 +543,7 @@ void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte o
out_blk[0] = LE32(blk[2] ^ l_key[0]);
out_blk[1] = LE32(blk[3] ^ l_key[1]);
out_blk[2] = LE32(blk[0] ^ l_key[2]);
out_blk[3] = LE32(blk[1] ^ l_key[3]);
out_blk[3] = LE32(blk[1] ^ l_key[3]);
};
#endif // TC_MINIMIZE_CODE_SIZE