mirror of
https://github.com/veracrypt/VeraCrypt.git
synced 2025-11-11 19:08:26 -06:00
Add original TrueCrypt 7.1a sources
This commit is contained in:
215
src/Crypto/Aes.h
Normal file
215
src/Crypto/Aes.h
Normal file
@@ -0,0 +1,215 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the definitions required to use AES in C. See aesopt.h
|
||||
for optimisation details.
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#ifndef _AES_H
|
||||
#define _AES_H
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#ifndef EXIT_SUCCESS
|
||||
#define EXIT_SUCCESS 0
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
#define INT_RETURN int
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
// #define AES_128 /* define if AES with 128 bit keys is needed */
|
||||
// #define AES_192 /* define if AES with 192 bit keys is needed */
|
||||
#define AES_256 /* define if AES with 256 bit keys is needed */
|
||||
// #define AES_VAR /* define if a variable key size is needed */
|
||||
// #define AES_MODES /* define if support is needed for modes */
|
||||
|
||||
/* The following must also be set in assembler files if being used */
|
||||
|
||||
#define AES_ENCRYPT /* if support for encryption is needed */
|
||||
#define AES_DECRYPT /* if support for decryption is needed */
|
||||
#define AES_ERR_CHK /* for parameter checks & error return codes */
|
||||
#define AES_REV_DKS /* define to reverse decryption key schedule */
|
||||
|
||||
#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */
|
||||
#define N_COLS 4 /* the number of columns in the state */
|
||||
|
||||
/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
|
||||
/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
|
||||
/* or 44, 52 or 60 32-bit words. */
|
||||
|
||||
#if defined( AES_VAR ) || defined( AES_256 )
|
||||
#define KS_LENGTH 60
|
||||
#elif defined( AES_192 )
|
||||
#define KS_LENGTH 52
|
||||
#else
|
||||
#define KS_LENGTH 44
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
#define AES_RETURN INT_RETURN
|
||||
#else
|
||||
#define AES_RETURN VOID_RETURN
|
||||
#endif
|
||||
|
||||
/* the character array 'inf' in the following structures is used */
|
||||
/* to hold AES context information. This AES code uses cx->inf.b[0] */
|
||||
/* to hold the number of rounds multiplied by 16. The other three */
|
||||
/* elements can be used by code that implements additional modes */
|
||||
|
||||
typedef union
|
||||
{ uint_32t l;
|
||||
uint_8t b[4];
|
||||
} aes_inf;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_encrypt_ctx;
|
||||
|
||||
typedef struct
|
||||
{ uint_32t ks[KS_LENGTH];
|
||||
aes_inf inf;
|
||||
} aes_decrypt_ctx;
|
||||
|
||||
/* This routine must be called before first use if non-static */
|
||||
/* tables are being used */
|
||||
|
||||
AES_RETURN aes_init(void);
|
||||
|
||||
/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
|
||||
/* those in the range 128 <= key_len <= 256 are given in bits */
|
||||
|
||||
#if defined( AES_ENCRYPT )
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DECRYPT )
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_MODES)
|
||||
|
||||
/* Multiple calls to the following subroutines for multiple block */
|
||||
/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */
|
||||
/* long messages incremantally provided that the context AND the iv */
|
||||
/* are preserved between all such calls. For the ECB and CBC modes */
|
||||
/* each individual call within a series of incremental calls must */
|
||||
/* process only full blocks (i.e. len must be a multiple of 16) but */
|
||||
/* the CFB, OFB and CTR mode calls can handle multiple incremental */
|
||||
/* calls of any length. Each mode is reset when a new AES key is */
|
||||
/* set but ECB and CBC operations can be reset without setting a */
|
||||
/* new key by setting a new IV value. To reset CFB, OFB and CTR */
|
||||
/* without setting the key, aes_mode_reset() must be called and the */
|
||||
/* IV must be set. NOTE: All these calls update the IV on exit so */
|
||||
/* this has to be reset if a new operation with the same IV as the */
|
||||
/* previous one is required (or decryption follows encryption with */
|
||||
/* the same IV array). */
|
||||
|
||||
AES_RETURN aes_test_alignment_detection(unsigned int n);
|
||||
|
||||
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#define aes_ofb_encrypt aes_ofb_crypt
|
||||
#define aes_ofb_decrypt aes_ofb_crypt
|
||||
|
||||
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
|
||||
|
||||
typedef void cbuf_inc(unsigned char *cbuf);
|
||||
|
||||
#define aes_ctr_encrypt aes_ctr_crypt
|
||||
#define aes_ctr_decrypt aes_ctr_crypt
|
||||
|
||||
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
|
||||
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
953
src/Crypto/AesSmall.c
Normal file
953
src/Crypto/AesSmall.c
Normal file
@@ -0,0 +1,953 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 09/09/2006
|
||||
|
||||
This is an AES implementation that uses only 8-bit byte operations on the
|
||||
cipher state (there are options to use 32-bit types if available).
|
||||
|
||||
The combination of mix columns and byte substitution used here is based on
|
||||
that developed by Karl Malbrain. His contribution is acknowledged.
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt:
|
||||
- Macro-generated tables were replaced with static data to enable compiling
|
||||
with MSVC++ 1.5 which runs out of resources when expanding large macros.
|
||||
*/
|
||||
|
||||
#pragma optimize ("t", on)
|
||||
|
||||
/* define if you have a fast memcpy function on your system */
|
||||
#if 1
|
||||
# define HAVE_MEMCPY
|
||||
# include <string.h>
|
||||
# if defined( _MSC_VER )
|
||||
# ifndef DEBUG
|
||||
# pragma intrinsic( memcpy )
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* define if you have fast 32-bit types on your system */
|
||||
#if 1
|
||||
# define HAVE_UINT_32T
|
||||
#endif
|
||||
|
||||
/* alternative versions (test for performance on your system) */
|
||||
#if 0
|
||||
# define VERSION_1
|
||||
#endif
|
||||
|
||||
#include "AesSmall.h"
|
||||
|
||||
#define WPOLY 0x011b
|
||||
#define DPOLY 0x008d
|
||||
#define f1(x) (x)
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0))
|
||||
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
static const uint_8t s_box[256] = {
|
||||
0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
|
||||
0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
|
||||
0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,
|
||||
0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
|
||||
0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,
|
||||
0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
|
||||
0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,
|
||||
0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
|
||||
0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,
|
||||
0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
|
||||
0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,
|
||||
0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
|
||||
0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,
|
||||
0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
|
||||
0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,
|
||||
0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
|
||||
0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,
|
||||
0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
|
||||
0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,
|
||||
0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
|
||||
0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,
|
||||
0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
|
||||
0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,
|
||||
0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
|
||||
0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,
|
||||
0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
|
||||
0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,
|
||||
0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
|
||||
0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,
|
||||
0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
|
||||
0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,
|
||||
0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16
|
||||
};
|
||||
|
||||
static const uint_8t inv_s_box[256] = {
|
||||
0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
|
||||
0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
|
||||
0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
|
||||
0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
|
||||
0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
|
||||
0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
|
||||
0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
|
||||
0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
|
||||
0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
|
||||
0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
|
||||
0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
|
||||
0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
|
||||
0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
|
||||
0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
|
||||
0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
|
||||
0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
|
||||
0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
|
||||
0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
|
||||
0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
|
||||
0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
|
||||
0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
|
||||
0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
|
||||
0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
|
||||
0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
|
||||
0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
|
||||
0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
|
||||
0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
|
||||
0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
|
||||
0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
|
||||
0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
|
||||
0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
|
||||
0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d
|
||||
};
|
||||
|
||||
static const uint_8t gfm2_s_box[256] = {
|
||||
0xc6,0xf8,0xee,0xf6,0xff,0xd6,0xde,0x91,
|
||||
0x60,0x02,0xce,0x56,0xe7,0xb5,0x4d,0xec,
|
||||
0x8f,0x1f,0x89,0xfa,0xef,0xb2,0x8e,0xfb,
|
||||
0x41,0xb3,0x5f,0x45,0x23,0x53,0xe4,0x9b,
|
||||
0x75,0xe1,0x3d,0x4c,0x6c,0x7e,0xf5,0x83,
|
||||
0x68,0x51,0xd1,0xf9,0xe2,0xab,0x62,0x2a,
|
||||
0x08,0x95,0x46,0x9d,0x30,0x37,0x0a,0x2f,
|
||||
0x0e,0x24,0x1b,0xdf,0xcd,0x4e,0x7f,0xea,
|
||||
0x12,0x1d,0x58,0x34,0x36,0xdc,0xb4,0x5b,
|
||||
0xa4,0x76,0xb7,0x7d,0x52,0xdd,0x5e,0x13,
|
||||
0xa6,0xb9,0x00,0xc1,0x40,0xe3,0x79,0xb6,
|
||||
0xd4,0x8d,0x67,0x72,0x94,0x98,0xb0,0x85,
|
||||
0xbb,0xc5,0x4f,0xed,0x86,0x9a,0x66,0x11,
|
||||
0x8a,0xe9,0x04,0xfe,0xa0,0x78,0x25,0x4b,
|
||||
0xa2,0x5d,0x80,0x05,0x3f,0x21,0x70,0xf1,
|
||||
0x63,0x77,0xaf,0x42,0x20,0xe5,0xfd,0xbf,
|
||||
0x81,0x18,0x26,0xc3,0xbe,0x35,0x88,0x2e,
|
||||
0x93,0x55,0xfc,0x7a,0xc8,0xba,0x32,0xe6,
|
||||
0xc0,0x19,0x9e,0xa3,0x44,0x54,0x3b,0x0b,
|
||||
0x8c,0xc7,0x6b,0x28,0xa7,0xbc,0x16,0xad,
|
||||
0xdb,0x64,0x74,0x14,0x92,0x0c,0x48,0xb8,
|
||||
0x9f,0xbd,0x43,0xc4,0x39,0x31,0xd3,0xf2,
|
||||
0xd5,0x8b,0x6e,0xda,0x01,0xb1,0x9c,0x49,
|
||||
0xd8,0xac,0xf3,0xcf,0xca,0xf4,0x47,0x10,
|
||||
0x6f,0xf0,0x4a,0x5c,0x38,0x57,0x73,0x97,
|
||||
0xcb,0xa1,0xe8,0x3e,0x96,0x61,0x0d,0x0f,
|
||||
0xe0,0x7c,0x71,0xcc,0x90,0x06,0xf7,0x1c,
|
||||
0xc2,0x6a,0xae,0x69,0x17,0x99,0x3a,0x27,
|
||||
0xd9,0xeb,0x2b,0x22,0xd2,0xa9,0x07,0x33,
|
||||
0x2d,0x3c,0x15,0xc9,0x87,0xaa,0x50,0xa5,
|
||||
0x03,0x59,0x09,0x1a,0x65,0xd7,0x84,0xd0,
|
||||
0x82,0x29,0x5a,0x1e,0x7b,0xa8,0x6d,0x2c
|
||||
};
|
||||
|
||||
static const uint_8t gfm3_s_box[256] = {
|
||||
0xa5,0x84,0x99,0x8d,0x0d,0xbd,0xb1,0x54,
|
||||
0x50,0x03,0xa9,0x7d,0x19,0x62,0xe6,0x9a,
|
||||
0x45,0x9d,0x40,0x87,0x15,0xeb,0xc9,0x0b,
|
||||
0xec,0x67,0xfd,0xea,0xbf,0xf7,0x96,0x5b,
|
||||
0xc2,0x1c,0xae,0x6a,0x5a,0x41,0x02,0x4f,
|
||||
0x5c,0xf4,0x34,0x08,0x93,0x73,0x53,0x3f,
|
||||
0x0c,0x52,0x65,0x5e,0x28,0xa1,0x0f,0xb5,
|
||||
0x09,0x36,0x9b,0x3d,0x26,0x69,0xcd,0x9f,
|
||||
0x1b,0x9e,0x74,0x2e,0x2d,0xb2,0xee,0xfb,
|
||||
0xf6,0x4d,0x61,0xce,0x7b,0x3e,0x71,0x97,
|
||||
0xf5,0x68,0x00,0x2c,0x60,0x1f,0xc8,0xed,
|
||||
0xbe,0x46,0xd9,0x4b,0xde,0xd4,0xe8,0x4a,
|
||||
0x6b,0x2a,0xe5,0x16,0xc5,0xd7,0x55,0x94,
|
||||
0xcf,0x10,0x06,0x81,0xf0,0x44,0xba,0xe3,
|
||||
0xf3,0xfe,0xc0,0x8a,0xad,0xbc,0x48,0x04,
|
||||
0xdf,0xc1,0x75,0x63,0x30,0x1a,0x0e,0x6d,
|
||||
0x4c,0x14,0x35,0x2f,0xe1,0xa2,0xcc,0x39,
|
||||
0x57,0xf2,0x82,0x47,0xac,0xe7,0x2b,0x95,
|
||||
0xa0,0x98,0xd1,0x7f,0x66,0x7e,0xab,0x83,
|
||||
0xca,0x29,0xd3,0x3c,0x79,0xe2,0x1d,0x76,
|
||||
0x3b,0x56,0x4e,0x1e,0xdb,0x0a,0x6c,0xe4,
|
||||
0x5d,0x6e,0xef,0xa6,0xa8,0xa4,0x37,0x8b,
|
||||
0x32,0x43,0x59,0xb7,0x8c,0x64,0xd2,0xe0,
|
||||
0xb4,0xfa,0x07,0x25,0xaf,0x8e,0xe9,0x18,
|
||||
0xd5,0x88,0x6f,0x72,0x24,0xf1,0xc7,0x51,
|
||||
0x23,0x7c,0x9c,0x21,0xdd,0xdc,0x86,0x85,
|
||||
0x90,0x42,0xc4,0xaa,0xd8,0x05,0x01,0x12,
|
||||
0xa3,0x5f,0xf9,0xd0,0x91,0x58,0x27,0xb9,
|
||||
0x38,0x13,0xb3,0x33,0xbb,0x70,0x89,0xa7,
|
||||
0xb6,0x22,0x92,0x20,0x49,0xff,0x78,0x7a,
|
||||
0x8f,0xf8,0x80,0x17,0xda,0x31,0xc6,0xb8,
|
||||
0xc3,0xb0,0x77,0x11,0xcb,0xfc,0xd6,0x3a
|
||||
};
|
||||
|
||||
static const uint_8t gfmul_9[256] = {
|
||||
0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,
|
||||
0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
|
||||
0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,
|
||||
0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,
|
||||
0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,
|
||||
0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,
|
||||
0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,
|
||||
0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,
|
||||
0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,
|
||||
0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,
|
||||
0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,
|
||||
0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,
|
||||
0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,
|
||||
0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,
|
||||
0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,
|
||||
0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,
|
||||
0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,
|
||||
0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,
|
||||
0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,
|
||||
0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,
|
||||
0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,
|
||||
0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,
|
||||
0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,
|
||||
0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,
|
||||
0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,
|
||||
0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,
|
||||
0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,
|
||||
0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,
|
||||
0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,
|
||||
0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,
|
||||
0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,
|
||||
0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46
|
||||
};
|
||||
|
||||
static const uint_8t gfmul_b[256] = {
|
||||
0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,
|
||||
0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,
|
||||
0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,
|
||||
0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,
|
||||
0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,
|
||||
0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,
|
||||
0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,
|
||||
0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,
|
||||
0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,
|
||||
0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,
|
||||
0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,
|
||||
0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,
|
||||
0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,
|
||||
0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,
|
||||
0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,
|
||||
0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,
|
||||
0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,
|
||||
0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,
|
||||
0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,
|
||||
0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,
|
||||
0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,
|
||||
0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,
|
||||
0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,
|
||||
0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,
|
||||
0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,
|
||||
0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,
|
||||
0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,
|
||||
0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,
|
||||
0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,
|
||||
0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,
|
||||
0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,
|
||||
0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3
|
||||
};
|
||||
|
||||
static const uint_8t gfmul_d[256] = {
|
||||
0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,
|
||||
0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,
|
||||
0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,
|
||||
0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,
|
||||
0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,
|
||||
0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,
|
||||
0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,
|
||||
0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,
|
||||
0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,
|
||||
0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,
|
||||
0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,
|
||||
0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,
|
||||
0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,
|
||||
0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,
|
||||
0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,
|
||||
0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,
|
||||
0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,
|
||||
0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,
|
||||
0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,
|
||||
0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,
|
||||
0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,
|
||||
0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,
|
||||
0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,
|
||||
0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,
|
||||
0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,
|
||||
0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,
|
||||
0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,
|
||||
0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,
|
||||
0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,
|
||||
0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,
|
||||
0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,
|
||||
0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97
|
||||
};
|
||||
|
||||
static const uint_8t gfmul_e[256] = {
|
||||
0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,
|
||||
0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,
|
||||
0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,
|
||||
0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,
|
||||
0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,
|
||||
0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,
|
||||
0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,
|
||||
0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,
|
||||
0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,
|
||||
0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,
|
||||
0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,
|
||||
0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,
|
||||
0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,
|
||||
0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,
|
||||
0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,
|
||||
0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,
|
||||
0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,
|
||||
0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,
|
||||
0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,
|
||||
0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,
|
||||
0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,
|
||||
0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,
|
||||
0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,
|
||||
0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,
|
||||
0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,
|
||||
0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,
|
||||
0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,
|
||||
0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,
|
||||
0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,
|
||||
0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,
|
||||
0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,
|
||||
0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d
|
||||
};
|
||||
|
||||
#if defined( HAVE_UINT_32T )
|
||||
typedef unsigned long uint_32t;
|
||||
#endif
|
||||
|
||||
#if defined( HAVE_MEMCPY )
|
||||
# define block_copy(d, s, l) memcpy(d, s, l)
|
||||
# define block16_copy(d, s) memcpy(d, s, N_BLOCK)
|
||||
#else
|
||||
# define block_copy(d, s, l) copy_block(d, s, l)
|
||||
# define block16_copy(d, s) copy_block16(d, s)
|
||||
#endif
|
||||
|
||||
/* block size 'nn' must be a multiple of four */
|
||||
|
||||
static void copy_block16( void *d, const void *s )
|
||||
{
|
||||
#if defined( HAVE_UINT_32T )
|
||||
((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0];
|
||||
((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1];
|
||||
((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2];
|
||||
((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3];
|
||||
#else
|
||||
((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0];
|
||||
((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1];
|
||||
((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2];
|
||||
((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3];
|
||||
((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4];
|
||||
((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5];
|
||||
((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6];
|
||||
((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7];
|
||||
((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8];
|
||||
((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9];
|
||||
((uint_8t*)d)[10] = ((uint_8t*)s)[10];
|
||||
((uint_8t*)d)[11] = ((uint_8t*)s)[11];
|
||||
((uint_8t*)d)[12] = ((uint_8t*)s)[12];
|
||||
((uint_8t*)d)[13] = ((uint_8t*)s)[13];
|
||||
((uint_8t*)d)[14] = ((uint_8t*)s)[14];
|
||||
((uint_8t*)d)[15] = ((uint_8t*)s)[15];
|
||||
#endif
|
||||
}
|
||||
|
||||
static void copy_block( void * d, void *s, uint_8t nn )
|
||||
{
|
||||
while( nn-- )
|
||||
*((uint_8t*)d)++ = *((uint_8t*)s)++;
|
||||
}
|
||||
|
||||
static void xor_block( void *d, const void *s )
|
||||
{
|
||||
#if defined( HAVE_UINT_32T )
|
||||
((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0];
|
||||
((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1];
|
||||
((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2];
|
||||
((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3];
|
||||
#else
|
||||
((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0];
|
||||
((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1];
|
||||
((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2];
|
||||
((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3];
|
||||
((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4];
|
||||
((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5];
|
||||
((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6];
|
||||
((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7];
|
||||
((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8];
|
||||
((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9];
|
||||
((uint_8t*)d)[10] ^= ((uint_8t*)s)[10];
|
||||
((uint_8t*)d)[11] ^= ((uint_8t*)s)[11];
|
||||
((uint_8t*)d)[12] ^= ((uint_8t*)s)[12];
|
||||
((uint_8t*)d)[13] ^= ((uint_8t*)s)[13];
|
||||
((uint_8t*)d)[14] ^= ((uint_8t*)s)[14];
|
||||
((uint_8t*)d)[15] ^= ((uint_8t*)s)[15];
|
||||
#endif
|
||||
}
|
||||
|
||||
static void copy_and_key( void *d, const void *s, const void *k )
|
||||
{
|
||||
#if defined( HAVE_UINT_32T )
|
||||
((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0];
|
||||
((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1];
|
||||
((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2];
|
||||
((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3];
|
||||
#elif 1
|
||||
((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0];
|
||||
((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1];
|
||||
((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2];
|
||||
((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3];
|
||||
((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4];
|
||||
((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5];
|
||||
((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6];
|
||||
((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7];
|
||||
((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8];
|
||||
((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9];
|
||||
((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10];
|
||||
((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11];
|
||||
((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12];
|
||||
((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13];
|
||||
((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14];
|
||||
((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15];
|
||||
#else
|
||||
block16_copy(d, s);
|
||||
xor_block(d, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] )
|
||||
{
|
||||
xor_block(d, k);
|
||||
}
|
||||
|
||||
static void shift_sub_rows( uint_8t st[N_BLOCK] )
|
||||
{ uint_8t tt;
|
||||
|
||||
st[ 0] = s_box[st[ 0]]; st[ 4] = s_box[st[ 4]];
|
||||
st[ 8] = s_box[st[ 8]]; st[12] = s_box[st[12]];
|
||||
|
||||
tt = st[1]; st[ 1] = s_box[st[ 5]]; st[ 5] = s_box[st[ 9]];
|
||||
st[ 9] = s_box[st[13]]; st[13] = s_box[ tt ];
|
||||
|
||||
tt = st[2]; st[ 2] = s_box[st[10]]; st[10] = s_box[ tt ];
|
||||
tt = st[6]; st[ 6] = s_box[st[14]]; st[14] = s_box[ tt ];
|
||||
|
||||
tt = st[15]; st[15] = s_box[st[11]]; st[11] = s_box[st[ 7]];
|
||||
st[ 7] = s_box[st[ 3]]; st[ 3] = s_box[ tt ];
|
||||
}
|
||||
|
||||
static void inv_shift_sub_rows( uint_8t st[N_BLOCK] )
|
||||
{ uint_8t tt;
|
||||
|
||||
st[ 0] = inv_s_box[st[ 0]]; st[ 4] = inv_s_box[st[ 4]];
|
||||
st[ 8] = inv_s_box[st[ 8]]; st[12] = inv_s_box[st[12]];
|
||||
|
||||
tt = st[13]; st[13] = inv_s_box[st[9]]; st[ 9] = inv_s_box[st[5]];
|
||||
st[ 5] = inv_s_box[st[1]]; st[ 1] = inv_s_box[ tt ];
|
||||
|
||||
tt = st[2]; st[ 2] = inv_s_box[st[10]]; st[10] = inv_s_box[ tt ];
|
||||
tt = st[6]; st[ 6] = inv_s_box[st[14]]; st[14] = inv_s_box[ tt ];
|
||||
|
||||
tt = st[3]; st[ 3] = inv_s_box[st[ 7]]; st[ 7] = inv_s_box[st[11]];
|
||||
st[11] = inv_s_box[st[15]]; st[15] = inv_s_box[ tt ];
|
||||
}
|
||||
|
||||
#if defined( VERSION_1 )
|
||||
static void mix_sub_columns( uint_8t dt[N_BLOCK] )
|
||||
{ uint_8t st[N_BLOCK];
|
||||
block16_copy(st, dt);
|
||||
#else
|
||||
static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
|
||||
{
|
||||
#endif
|
||||
dt[ 0] = gfm2_s_box[st[0]] ^ gfm3_s_box[st[5]] ^ s_box[st[10]] ^ s_box[st[15]];
|
||||
dt[ 1] = s_box[st[0]] ^ gfm2_s_box[st[5]] ^ gfm3_s_box[st[10]] ^ s_box[st[15]];
|
||||
dt[ 2] = s_box[st[0]] ^ s_box[st[5]] ^ gfm2_s_box[st[10]] ^ gfm3_s_box[st[15]];
|
||||
dt[ 3] = gfm3_s_box[st[0]] ^ s_box[st[5]] ^ s_box[st[10]] ^ gfm2_s_box[st[15]];
|
||||
|
||||
dt[ 4] = gfm2_s_box[st[4]] ^ gfm3_s_box[st[9]] ^ s_box[st[14]] ^ s_box[st[3]];
|
||||
dt[ 5] = s_box[st[4]] ^ gfm2_s_box[st[9]] ^ gfm3_s_box[st[14]] ^ s_box[st[3]];
|
||||
dt[ 6] = s_box[st[4]] ^ s_box[st[9]] ^ gfm2_s_box[st[14]] ^ gfm3_s_box[st[3]];
|
||||
dt[ 7] = gfm3_s_box[st[4]] ^ s_box[st[9]] ^ s_box[st[14]] ^ gfm2_s_box[st[3]];
|
||||
|
||||
dt[ 8] = gfm2_s_box[st[8]] ^ gfm3_s_box[st[13]] ^ s_box[st[2]] ^ s_box[st[7]];
|
||||
dt[ 9] = s_box[st[8]] ^ gfm2_s_box[st[13]] ^ gfm3_s_box[st[2]] ^ s_box[st[7]];
|
||||
dt[10] = s_box[st[8]] ^ s_box[st[13]] ^ gfm2_s_box[st[2]] ^ gfm3_s_box[st[7]];
|
||||
dt[11] = gfm3_s_box[st[8]] ^ s_box[st[13]] ^ s_box[st[2]] ^ gfm2_s_box[st[7]];
|
||||
|
||||
dt[12] = gfm2_s_box[st[12]] ^ gfm3_s_box[st[1]] ^ s_box[st[6]] ^ s_box[st[11]];
|
||||
dt[13] = s_box[st[12]] ^ gfm2_s_box[st[1]] ^ gfm3_s_box[st[6]] ^ s_box[st[11]];
|
||||
dt[14] = s_box[st[12]] ^ s_box[st[1]] ^ gfm2_s_box[st[6]] ^ gfm3_s_box[st[11]];
|
||||
dt[15] = gfm3_s_box[st[12]] ^ s_box[st[1]] ^ s_box[st[6]] ^ gfm2_s_box[st[11]];
|
||||
}
|
||||
|
||||
#if defined( VERSION_1 )
|
||||
static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] )
|
||||
{ uint_8t st[N_BLOCK];
|
||||
block16_copy(st, dt);
|
||||
#else
|
||||
static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
|
||||
{
|
||||
#endif
|
||||
dt[ 0] = inv_s_box[gfmul_e[st[ 0]] ^ gfmul_b[st[ 1]] ^ gfmul_d[st[ 2]] ^ gfmul_9[st[ 3]]];
|
||||
dt[ 5] = inv_s_box[gfmul_9[st[ 0]] ^ gfmul_e[st[ 1]] ^ gfmul_b[st[ 2]] ^ gfmul_d[st[ 3]]];
|
||||
dt[10] = inv_s_box[gfmul_d[st[ 0]] ^ gfmul_9[st[ 1]] ^ gfmul_e[st[ 2]] ^ gfmul_b[st[ 3]]];
|
||||
dt[15] = inv_s_box[gfmul_b[st[ 0]] ^ gfmul_d[st[ 1]] ^ gfmul_9[st[ 2]] ^ gfmul_e[st[ 3]]];
|
||||
|
||||
dt[ 4] = inv_s_box[gfmul_e[st[ 4]] ^ gfmul_b[st[ 5]] ^ gfmul_d[st[ 6]] ^ gfmul_9[st[ 7]]];
|
||||
dt[ 9] = inv_s_box[gfmul_9[st[ 4]] ^ gfmul_e[st[ 5]] ^ gfmul_b[st[ 6]] ^ gfmul_d[st[ 7]]];
|
||||
dt[14] = inv_s_box[gfmul_d[st[ 4]] ^ gfmul_9[st[ 5]] ^ gfmul_e[st[ 6]] ^ gfmul_b[st[ 7]]];
|
||||
dt[ 3] = inv_s_box[gfmul_b[st[ 4]] ^ gfmul_d[st[ 5]] ^ gfmul_9[st[ 6]] ^ gfmul_e[st[ 7]]];
|
||||
|
||||
dt[ 8] = inv_s_box[gfmul_e[st[ 8]] ^ gfmul_b[st[ 9]] ^ gfmul_d[st[10]] ^ gfmul_9[st[11]]];
|
||||
dt[13] = inv_s_box[gfmul_9[st[ 8]] ^ gfmul_e[st[ 9]] ^ gfmul_b[st[10]] ^ gfmul_d[st[11]]];
|
||||
dt[ 2] = inv_s_box[gfmul_d[st[ 8]] ^ gfmul_9[st[ 9]] ^ gfmul_e[st[10]] ^ gfmul_b[st[11]]];
|
||||
dt[ 7] = inv_s_box[gfmul_b[st[ 8]] ^ gfmul_d[st[ 9]] ^ gfmul_9[st[10]] ^ gfmul_e[st[11]]];
|
||||
|
||||
dt[12] = inv_s_box[gfmul_e[st[12]] ^ gfmul_b[st[13]] ^ gfmul_d[st[14]] ^ gfmul_9[st[15]]];
|
||||
dt[ 1] = inv_s_box[gfmul_9[st[12]] ^ gfmul_e[st[13]] ^ gfmul_b[st[14]] ^ gfmul_d[st[15]]];
|
||||
dt[ 6] = inv_s_box[gfmul_d[st[12]] ^ gfmul_9[st[13]] ^ gfmul_e[st[14]] ^ gfmul_b[st[15]]];
|
||||
dt[11] = inv_s_box[gfmul_b[st[12]] ^ gfmul_d[st[13]] ^ gfmul_9[st[14]] ^ gfmul_e[st[15]]];
|
||||
}
|
||||
|
||||
#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
|
||||
|
||||
/* Set the cipher key for the pre-keyed version */
|
||||
|
||||
return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] )
|
||||
{
|
||||
uint_8t cc, rc, hi;
|
||||
|
||||
switch( keylen )
|
||||
{
|
||||
case 16:
|
||||
case 128:
|
||||
keylen = 16;
|
||||
break;
|
||||
case 24:
|
||||
case 192:
|
||||
keylen = 24;
|
||||
break;
|
||||
case 32:
|
||||
case 256:
|
||||
keylen = 32;
|
||||
break;
|
||||
default:
|
||||
ctx->rnd = 0;
|
||||
return (return_type) -1;
|
||||
}
|
||||
block_copy(ctx->ksch, key, keylen);
|
||||
hi = (keylen + 28) << 2;
|
||||
ctx->rnd = (hi >> 4) - 1;
|
||||
for( cc = keylen, rc = 1; cc < hi; cc += 4 )
|
||||
{ uint_8t tt, t0, t1, t2, t3;
|
||||
|
||||
t0 = ctx->ksch[cc - 4];
|
||||
t1 = ctx->ksch[cc - 3];
|
||||
t2 = ctx->ksch[cc - 2];
|
||||
t3 = ctx->ksch[cc - 1];
|
||||
if( cc % keylen == 0 )
|
||||
{
|
||||
tt = t0;
|
||||
t0 = s_box[t1] ^ rc;
|
||||
t1 = s_box[t2];
|
||||
t2 = s_box[t3];
|
||||
t3 = s_box[tt];
|
||||
rc = f2(rc);
|
||||
}
|
||||
else if( keylen > 24 && cc % keylen == 16 )
|
||||
{
|
||||
t0 = s_box[t0];
|
||||
t1 = s_box[t1];
|
||||
t2 = s_box[t2];
|
||||
t3 = s_box[t3];
|
||||
}
|
||||
tt = cc - keylen;
|
||||
ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0;
|
||||
ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1;
|
||||
ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2;
|
||||
ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_ENC_PREKEYED )
|
||||
|
||||
/* Encrypt a single block of 16 bytes */
|
||||
|
||||
return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
|
||||
{
|
||||
if( ctx->rnd )
|
||||
{
|
||||
uint_8t s1[N_BLOCK], r;
|
||||
copy_and_key( s1, in, ctx->ksch );
|
||||
|
||||
for( r = 1 ; r < ctx->rnd ; ++r )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
mix_sub_columns( s1 );
|
||||
add_round_key( s1, ctx->ksch + r * N_BLOCK);
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
mix_sub_columns( s2, s1 );
|
||||
copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK);
|
||||
}
|
||||
#endif
|
||||
shift_sub_rows( s1 );
|
||||
copy_and_key( out, s1, ctx->ksch + r * N_BLOCK );
|
||||
}
|
||||
else
|
||||
return (return_type) -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_PREKEYED )
|
||||
|
||||
/* Decrypt a single block of 16 bytes */
|
||||
|
||||
return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
|
||||
{
|
||||
if( ctx->rnd )
|
||||
{
|
||||
uint_8t s1[N_BLOCK], r;
|
||||
copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK );
|
||||
inv_shift_sub_rows( s1 );
|
||||
|
||||
for( r = ctx->rnd ; --r ; )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
add_round_key( s1, ctx->ksch + r * N_BLOCK );
|
||||
inv_mix_sub_columns( s1 );
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK );
|
||||
inv_mix_sub_columns( s1, s2 );
|
||||
}
|
||||
#endif
|
||||
copy_and_key( out, s1, ctx->ksch );
|
||||
}
|
||||
else
|
||||
return (return_type) -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_ENC_128_OTFK )
|
||||
|
||||
/* The 'on the fly' encryption key update for for 128 bit keys */
|
||||
|
||||
static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
|
||||
{ uint_8t cc;
|
||||
|
||||
k[0] ^= s_box[k[13]] ^ *rc;
|
||||
k[1] ^= s_box[k[14]];
|
||||
k[2] ^= s_box[k[15]];
|
||||
k[3] ^= s_box[k[12]];
|
||||
*rc = f2( *rc );
|
||||
|
||||
for(cc = 4; cc < 16; cc += 4 )
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
|
||||
|
||||
void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
||||
const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
|
||||
{ uint_8t s1[N_BLOCK], r, rc = 1;
|
||||
|
||||
if(o_key != key)
|
||||
block16_copy( o_key, key );
|
||||
copy_and_key( s1, in, o_key );
|
||||
|
||||
for( r = 1 ; r < 10 ; ++r )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
mix_sub_columns( s1 );
|
||||
update_encrypt_key_128( o_key, &rc );
|
||||
add_round_key( s1, o_key );
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
mix_sub_columns( s2, s1 );
|
||||
update_encrypt_key_128( o_key, &rc );
|
||||
copy_and_key( s1, s2, o_key );
|
||||
}
|
||||
#endif
|
||||
|
||||
shift_sub_rows( s1 );
|
||||
update_encrypt_key_128( o_key, &rc );
|
||||
copy_and_key( out, s1, o_key );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_128_OTFK )
|
||||
|
||||
/* The 'on the fly' decryption key update for for 128 bit keys */
|
||||
|
||||
static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
|
||||
{ uint_8t cc;
|
||||
|
||||
for( cc = 12; cc > 0; cc -= 4 )
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
*rc = d2(*rc);
|
||||
k[0] ^= s_box[k[13]] ^ *rc;
|
||||
k[1] ^= s_box[k[14]];
|
||||
k[2] ^= s_box[k[15]];
|
||||
k[3] ^= s_box[k[12]];
|
||||
}
|
||||
|
||||
/* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
|
||||
|
||||
void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
||||
const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
|
||||
{
|
||||
uint_8t s1[N_BLOCK], r, rc = 0x6c;
|
||||
if(o_key != key)
|
||||
block16_copy( o_key, key );
|
||||
|
||||
copy_and_key( s1, in, o_key );
|
||||
inv_shift_sub_rows( s1 );
|
||||
|
||||
for( r = 10 ; --r ; )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
update_decrypt_key_128( o_key, &rc );
|
||||
add_round_key( s1, o_key );
|
||||
inv_mix_sub_columns( s1 );
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
update_decrypt_key_128( o_key, &rc );
|
||||
copy_and_key( s2, s1, o_key );
|
||||
inv_mix_sub_columns( s1, s2 );
|
||||
}
|
||||
#endif
|
||||
update_decrypt_key_128( o_key, &rc );
|
||||
copy_and_key( out, s1, o_key );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_ENC_256_OTFK )
|
||||
|
||||
/* The 'on the fly' encryption key update for for 256 bit keys */
|
||||
|
||||
static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
|
||||
{ uint_8t cc;
|
||||
|
||||
k[0] ^= s_box[k[29]] ^ *rc;
|
||||
k[1] ^= s_box[k[30]];
|
||||
k[2] ^= s_box[k[31]];
|
||||
k[3] ^= s_box[k[28]];
|
||||
*rc = f2( *rc );
|
||||
|
||||
for(cc = 4; cc < 16; cc += 4)
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
|
||||
k[16] ^= s_box[k[12]];
|
||||
k[17] ^= s_box[k[13]];
|
||||
k[18] ^= s_box[k[14]];
|
||||
k[19] ^= s_box[k[15]];
|
||||
|
||||
for( cc = 20; cc < 32; cc += 4 )
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
}
|
||||
|
||||
/* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */
|
||||
|
||||
void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
||||
const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
|
||||
{
|
||||
uint_8t s1[N_BLOCK], r, rc = 1;
|
||||
if(o_key != key)
|
||||
{
|
||||
block16_copy( o_key, key );
|
||||
block16_copy( o_key + 16, key + 16 );
|
||||
}
|
||||
copy_and_key( s1, in, o_key );
|
||||
|
||||
for( r = 1 ; r < 14 ; ++r )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
mix_sub_columns(s1);
|
||||
if( r & 1 )
|
||||
add_round_key( s1, o_key + 16 );
|
||||
else
|
||||
{
|
||||
update_encrypt_key_256( o_key, &rc );
|
||||
add_round_key( s1, o_key );
|
||||
}
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
mix_sub_columns( s2, s1 );
|
||||
if( r & 1 )
|
||||
copy_and_key( s1, s2, o_key + 16 );
|
||||
else
|
||||
{
|
||||
update_encrypt_key_256( o_key, &rc );
|
||||
copy_and_key( s1, s2, o_key );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
shift_sub_rows( s1 );
|
||||
update_encrypt_key_256( o_key, &rc );
|
||||
copy_and_key( out, s1, o_key );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_256_OTFK )
|
||||
|
||||
/* The 'on the fly' encryption key update for for 256 bit keys */
|
||||
|
||||
static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
|
||||
{ uint_8t cc;
|
||||
|
||||
for(cc = 28; cc > 16; cc -= 4)
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
|
||||
k[16] ^= s_box[k[12]];
|
||||
k[17] ^= s_box[k[13]];
|
||||
k[18] ^= s_box[k[14]];
|
||||
k[19] ^= s_box[k[15]];
|
||||
|
||||
for(cc = 12; cc > 0; cc -= 4)
|
||||
{
|
||||
k[cc + 0] ^= k[cc - 4];
|
||||
k[cc + 1] ^= k[cc - 3];
|
||||
k[cc + 2] ^= k[cc - 2];
|
||||
k[cc + 3] ^= k[cc - 1];
|
||||
}
|
||||
|
||||
*rc = d2(*rc);
|
||||
k[0] ^= s_box[k[29]] ^ *rc;
|
||||
k[1] ^= s_box[k[30]];
|
||||
k[2] ^= s_box[k[31]];
|
||||
k[3] ^= s_box[k[28]];
|
||||
}
|
||||
|
||||
/* Decrypt a single block of 16 bytes with 'on the fly'
|
||||
256 bit keying
|
||||
*/
|
||||
void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
|
||||
const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
|
||||
{
|
||||
uint_8t s1[N_BLOCK], r, rc = 0x80;
|
||||
|
||||
if(o_key != key)
|
||||
{
|
||||
block16_copy( o_key, key );
|
||||
block16_copy( o_key + 16, key + 16 );
|
||||
}
|
||||
|
||||
copy_and_key( s1, in, o_key );
|
||||
inv_shift_sub_rows( s1 );
|
||||
|
||||
for( r = 14 ; --r ; )
|
||||
#if defined( VERSION_1 )
|
||||
{
|
||||
if( ( r & 1 ) )
|
||||
{
|
||||
update_decrypt_key_256( o_key, &rc );
|
||||
add_round_key( s1, o_key + 16 );
|
||||
}
|
||||
else
|
||||
add_round_key( s1, o_key );
|
||||
inv_mix_sub_columns( s1 );
|
||||
}
|
||||
#else
|
||||
{ uint_8t s2[N_BLOCK];
|
||||
if( ( r & 1 ) )
|
||||
{
|
||||
update_decrypt_key_256( o_key, &rc );
|
||||
copy_and_key( s2, s1, o_key + 16 );
|
||||
}
|
||||
else
|
||||
copy_and_key( s2, s1, o_key );
|
||||
inv_mix_sub_columns( s1, s2 );
|
||||
}
|
||||
#endif
|
||||
copy_and_key( out, s1, o_key );
|
||||
}
|
||||
|
||||
#endif
|
||||
169
src/Crypto/AesSmall.h
Normal file
169
src/Crypto/AesSmall.h
Normal file
@@ -0,0 +1,169 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software in both source and binary
|
||||
form is allowed (with or without changes) provided that:
|
||||
|
||||
1. distributions of this source code include the above copyright
|
||||
notice, this list of conditions and the following disclaimer;
|
||||
|
||||
2. distributions in binary form include the above copyright
|
||||
notice, this list of conditions and the following disclaimer
|
||||
in the documentation and/or other associated materials;
|
||||
|
||||
3. the copyright holder's name is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||||
may be distributed under the terms of the GNU General Public License (GPL),
|
||||
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue 09/09/2006
|
||||
|
||||
This is an AES implementation that uses only 8-bit byte operations on the
|
||||
cipher state.
|
||||
*/
|
||||
|
||||
#ifndef AES_H
|
||||
#define AES_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* This provides speed optimisation opportunities if 32-bit word
|
||||
operations are available
|
||||
*/
|
||||
#if 1
|
||||
# define HAVE_UINT_32T
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
# define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */
|
||||
#endif
|
||||
#if 1
|
||||
# define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */
|
||||
#endif
|
||||
#if 0
|
||||
# define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */
|
||||
#endif
|
||||
#if 0
|
||||
# define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */
|
||||
#endif
|
||||
#if 0
|
||||
# define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */
|
||||
#endif
|
||||
#if 0
|
||||
# define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */
|
||||
#endif
|
||||
|
||||
#define N_ROW 4
|
||||
#define N_COL 4
|
||||
#define N_BLOCK (N_ROW * N_COL)
|
||||
#define N_MAX_ROUNDS 14
|
||||
|
||||
typedef unsigned char uint_8t;
|
||||
|
||||
typedef uint_8t return_type;
|
||||
typedef uint_8t length_type;
|
||||
typedef uint_8t uint_type;
|
||||
|
||||
typedef unsigned char uint_8t;
|
||||
|
||||
typedef struct
|
||||
{ uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK];
|
||||
uint_8t rnd;
|
||||
} aes_context;
|
||||
|
||||
/* The following calls are for a precomputed key schedule
|
||||
|
||||
NOTE: If the length_type used for the key length is an
|
||||
unsigned 8-bit character, a key length of 256 bits must
|
||||
be entered as a length in bytes (valid inputs are hence
|
||||
128, 192, 16, 24 and 32).
|
||||
*/
|
||||
|
||||
#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
|
||||
|
||||
return_type aes_set_key( const unsigned char key[],
|
||||
length_type keylen,
|
||||
aes_context ctx[1] );
|
||||
#endif
|
||||
|
||||
#if defined( AES_ENC_PREKEYED )
|
||||
|
||||
return_type aes_encrypt( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const aes_context ctx[1] );
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_PREKEYED )
|
||||
|
||||
return_type aes_decrypt( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const aes_context ctx[1] );
|
||||
#endif
|
||||
|
||||
/* The following calls are for 'on the fly' keying. In this case the
|
||||
encryption and decryption keys are different.
|
||||
|
||||
The encryption subroutines take a key in an array of bytes in
|
||||
key[L] where L is 16, 24 or 32 bytes for key lengths of 128,
|
||||
192, and 256 bits respectively. They then encrypts the input
|
||||
data, in[] with this key and put the reult in the output array
|
||||
out[]. In addition, the second key array, o_key[L], is used
|
||||
to output the key that is needed by the decryption subroutine
|
||||
to reverse the encryption operation. The two key arrays can
|
||||
be the same array but in this case the original key will be
|
||||
overwritten.
|
||||
|
||||
In the same way, the decryption subroutines output keys that
|
||||
can be used to reverse their effect when used for encryption.
|
||||
|
||||
Only 128 and 256 bit keys are supported in these 'on the fly'
|
||||
modes.
|
||||
*/
|
||||
|
||||
#if defined( AES_ENC_128_OTFK )
|
||||
void aes_encrypt_128( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const unsigned char key[N_BLOCK],
|
||||
uint_8t o_key[N_BLOCK] );
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_128_OTFK )
|
||||
void aes_decrypt_128( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const unsigned char key[N_BLOCK],
|
||||
unsigned char o_key[N_BLOCK] );
|
||||
#endif
|
||||
|
||||
#if defined( AES_ENC_256_OTFK )
|
||||
void aes_encrypt_256( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const unsigned char key[2 * N_BLOCK],
|
||||
unsigned char o_key[2 * N_BLOCK] );
|
||||
#endif
|
||||
|
||||
#if defined( AES_DEC_256_OTFK )
|
||||
void aes_decrypt_256( const unsigned char in[N_BLOCK],
|
||||
unsigned char out[N_BLOCK],
|
||||
const unsigned char key[2 * N_BLOCK],
|
||||
unsigned char o_key[2 * N_BLOCK] );
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
1444
src/Crypto/AesSmall_x86.asm
Normal file
1444
src/Crypto/AesSmall_x86.asm
Normal file
File diff suppressed because it is too large
Load Diff
330
src/Crypto/Aes_hw_cpu.asm
Normal file
330
src/Crypto/Aes_hw_cpu.asm
Normal file
@@ -0,0 +1,330 @@
|
||||
;
|
||||
; Copyright (c) 2010 TrueCrypt Developers Association. All rights reserved.
|
||||
;
|
||||
; Governed by the TrueCrypt License 3.0 the full text of which is contained in
|
||||
; the file License.txt included in TrueCrypt binary and source code distribution
|
||||
; packages.
|
||||
;
|
||||
|
||||
|
||||
%ifidn __BITS__, 16
|
||||
%define R e
|
||||
%elifidn __BITS__, 32
|
||||
%define R e
|
||||
%elifidn __BITS__, 64
|
||||
%define R r
|
||||
%endif
|
||||
|
||||
|
||||
%macro export_function 1-2 0
|
||||
|
||||
%ifdef MS_STDCALL
|
||||
global %1@%2
|
||||
export _%1@%2
|
||||
%1@%2:
|
||||
%elifidn __BITS__, 16
|
||||
global _%1
|
||||
_%1:
|
||||
%else
|
||||
global %1
|
||||
%1:
|
||||
%endif
|
||||
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro aes_function_entry 1
|
||||
|
||||
; void (const byte *ks, byte *data);
|
||||
|
||||
export_function %1, 8
|
||||
|
||||
%ifidn __BITS__, 32
|
||||
mov ecx, [esp + 4 + 4 * 0]
|
||||
mov edx, [esp + 4 + 4 * 1]
|
||||
%elifidn __BITS__, 64
|
||||
%ifnidn __OUTPUT_FORMAT__, win64
|
||||
mov rcx, rdi
|
||||
mov rdx, rsi
|
||||
%endif
|
||||
%endif
|
||||
|
||||
; ecx/rcx = ks
|
||||
; edx/rdx = data
|
||||
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro aes_function_exit 0
|
||||
|
||||
; void (const byte *, byte *);
|
||||
|
||||
%ifdef MS_STDCALL
|
||||
ret 8
|
||||
%else
|
||||
ret
|
||||
%endif
|
||||
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro push_xmm 2
|
||||
sub rsp, 16 * (%2 - %1 + 1)
|
||||
|
||||
%assign stackoffset 0
|
||||
%assign regnumber %1
|
||||
|
||||
%rep (%2 - %1 + 1)
|
||||
movdqu [rsp + 16 * stackoffset], xmm%[regnumber]
|
||||
|
||||
%assign stackoffset stackoffset+1
|
||||
%assign regnumber regnumber+1
|
||||
%endrep
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro pop_xmm 2
|
||||
%assign stackoffset 0
|
||||
%assign regnumber %1
|
||||
|
||||
%rep (%2 - %1 + 1)
|
||||
movdqu xmm%[regnumber], [rsp + 16 * stackoffset]
|
||||
|
||||
%assign stackoffset stackoffset+1
|
||||
%assign regnumber regnumber+1
|
||||
%endrep
|
||||
|
||||
add rsp, 16 * (%2 - %1 + 1)
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro aes_hw_cpu 2
|
||||
%define OPERATION %1
|
||||
%define BLOCK_COUNT %2
|
||||
|
||||
; Load data blocks
|
||||
%assign block 1
|
||||
%rep BLOCK_COUNT
|
||||
movdqu xmm%[block], [%[R]dx + 16 * (block - 1)]
|
||||
%assign block block+1
|
||||
%endrep
|
||||
|
||||
; Encrypt/decrypt data blocks
|
||||
%assign round 0
|
||||
%rep 15
|
||||
movdqu xmm0, [%[R]cx + 16 * round]
|
||||
|
||||
%assign block 1
|
||||
%rep BLOCK_COUNT
|
||||
|
||||
%if round = 0
|
||||
pxor xmm%[block], xmm0
|
||||
%else
|
||||
%if round < 14
|
||||
aes%[OPERATION] xmm%[block], xmm0
|
||||
%else
|
||||
aes%[OPERATION]last xmm%[block], xmm0
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%assign block block+1
|
||||
%endrep
|
||||
|
||||
%assign round round+1
|
||||
%endrep
|
||||
|
||||
; Store data blocks
|
||||
%assign block 1
|
||||
%rep BLOCK_COUNT
|
||||
movdqu [%[R]dx + 16 * (block - 1)], xmm%[block]
|
||||
%assign block block+1
|
||||
%endrep
|
||||
|
||||
%undef OPERATION
|
||||
%undef BLOCK_COUNT
|
||||
%endmacro
|
||||
|
||||
|
||||
%macro aes_hw_cpu_32_blocks 1
|
||||
%define OPERATION_32_BLOCKS %1
|
||||
|
||||
%ifidn __BITS__, 64
|
||||
%define MAX_REG_BLOCK_COUNT 15
|
||||
%else
|
||||
%define MAX_REG_BLOCK_COUNT 7
|
||||
%endif
|
||||
|
||||
%ifidn __OUTPUT_FORMAT__, win64
|
||||
%if MAX_REG_BLOCK_COUNT > 5
|
||||
push_xmm 6, MAX_REG_BLOCK_COUNT
|
||||
%endif
|
||||
%endif
|
||||
|
||||
mov eax, 32 / MAX_REG_BLOCK_COUNT
|
||||
.1:
|
||||
aes_hw_cpu %[OPERATION_32_BLOCKS], MAX_REG_BLOCK_COUNT
|
||||
|
||||
add %[R]dx, 16 * MAX_REG_BLOCK_COUNT
|
||||
dec eax
|
||||
jnz .1
|
||||
|
||||
%if (32 % MAX_REG_BLOCK_COUNT) != 0
|
||||
aes_hw_cpu %[OPERATION_32_BLOCKS], (32 % MAX_REG_BLOCK_COUNT)
|
||||
%endif
|
||||
|
||||
%ifidn __OUTPUT_FORMAT__, win64
|
||||
%if MAX_REG_BLOCK_COUNT > 5
|
||||
pop_xmm 6, MAX_REG_BLOCK_COUNT
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%undef OPERATION_32_BLOCKS
|
||||
%undef MAX_REG_BLOCK_COUNT
|
||||
%endmacro
|
||||
|
||||
|
||||
%ifidn __BITS__, 16
|
||||
|
||||
USE16
|
||||
SEGMENT _TEXT PUBLIC CLASS=CODE USE16
|
||||
SEGMENT _DATA PUBLIC CLASS=DATA USE16
|
||||
GROUP DGROUP _TEXT _DATA
|
||||
SECTION _TEXT
|
||||
|
||||
%else
|
||||
|
||||
SECTION .text
|
||||
|
||||
%endif
|
||||
|
||||
|
||||
; void aes_hw_cpu_enable_sse ();
|
||||
|
||||
export_function aes_hw_cpu_enable_sse
|
||||
mov %[R]ax, cr4
|
||||
or ax, 1 << 9
|
||||
mov cr4, %[R]ax
|
||||
ret
|
||||
|
||||
|
||||
%ifidn __BITS__, 16
|
||||
|
||||
|
||||
; byte is_aes_hw_cpu_supported ();
|
||||
|
||||
export_function is_aes_hw_cpu_supported
|
||||
mov eax, 1
|
||||
cpuid
|
||||
mov eax, ecx
|
||||
shr eax, 25
|
||||
and al, 1
|
||||
ret
|
||||
|
||||
|
||||
; void aes_hw_cpu_decrypt (const byte *ks, byte *data);
|
||||
|
||||
export_function aes_hw_cpu_decrypt
|
||||
mov ax, -16
|
||||
jmp aes_hw_cpu_encrypt_decrypt
|
||||
|
||||
; void aes_hw_cpu_encrypt (const byte *ks, byte *data);
|
||||
|
||||
export_function aes_hw_cpu_encrypt
|
||||
mov ax, 16
|
||||
|
||||
aes_hw_cpu_encrypt_decrypt:
|
||||
push bp
|
||||
mov bp, sp
|
||||
push di
|
||||
push si
|
||||
|
||||
mov si, [bp + 4] ; ks
|
||||
mov di, [bp + 4 + 2] ; data
|
||||
|
||||
movdqu xmm0, [si]
|
||||
movdqu xmm1, [di]
|
||||
|
||||
pxor xmm1, xmm0
|
||||
|
||||
mov cx, 13
|
||||
|
||||
.round1_13:
|
||||
add si, ax
|
||||
movdqu xmm0, [si]
|
||||
|
||||
cmp ax, 0
|
||||
jl .decrypt
|
||||
|
||||
aesenc xmm1, xmm0
|
||||
jmp .2
|
||||
.decrypt:
|
||||
aesdec xmm1, xmm0
|
||||
.2:
|
||||
loop .round1_13
|
||||
|
||||
add si, ax
|
||||
movdqu xmm0, [si]
|
||||
|
||||
cmp ax, 0
|
||||
jl .decrypt_last
|
||||
|
||||
aesenclast xmm1, xmm0
|
||||
jmp .3
|
||||
.decrypt_last:
|
||||
aesdeclast xmm1, xmm0
|
||||
.3:
|
||||
movdqu [di], xmm1
|
||||
|
||||
pop si
|
||||
pop di
|
||||
pop bp
|
||||
ret
|
||||
|
||||
|
||||
%else ; __BITS__ != 16
|
||||
|
||||
|
||||
; byte is_aes_hw_cpu_supported ();
|
||||
|
||||
export_function is_aes_hw_cpu_supported
|
||||
push %[R]bx
|
||||
|
||||
mov eax, 1
|
||||
cpuid
|
||||
mov eax, ecx
|
||||
shr eax, 25
|
||||
and eax, 1
|
||||
|
||||
pop %[R]bx
|
||||
ret
|
||||
|
||||
|
||||
; void aes_hw_cpu_decrypt (const byte *ks, byte *data);
|
||||
|
||||
aes_function_entry aes_hw_cpu_decrypt
|
||||
aes_hw_cpu dec, 1
|
||||
aes_function_exit
|
||||
|
||||
|
||||
; void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data);
|
||||
|
||||
aes_function_entry aes_hw_cpu_decrypt_32_blocks
|
||||
aes_hw_cpu_32_blocks dec
|
||||
aes_function_exit
|
||||
|
||||
|
||||
; void aes_hw_cpu_encrypt (const byte *ks, byte *data);
|
||||
|
||||
aes_function_entry aes_hw_cpu_encrypt
|
||||
aes_hw_cpu enc, 1
|
||||
aes_function_exit
|
||||
|
||||
|
||||
; void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data);
|
||||
|
||||
aes_function_entry aes_hw_cpu_encrypt_32_blocks
|
||||
aes_hw_cpu_32_blocks enc
|
||||
aes_function_exit
|
||||
|
||||
|
||||
%endif ; __BITS__ != 16
|
||||
30
src/Crypto/Aes_hw_cpu.h
Normal file
30
src/Crypto/Aes_hw_cpu.h
Normal file
@@ -0,0 +1,30 @@
|
||||
/*
|
||||
Copyright (c) 2010 TrueCrypt Developers Association. All rights reserved.
|
||||
|
||||
Governed by the TrueCrypt License 3.0 the full text of which is contained in
|
||||
the file License.txt included in TrueCrypt binary and source code distribution
|
||||
packages.
|
||||
*/
|
||||
|
||||
#ifndef TC_HEADER_Crypto_Aes_Hw_Cpu
|
||||
#define TC_HEADER_Crypto_Aes_Hw_Cpu
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
byte is_aes_hw_cpu_supported ();
|
||||
void aes_hw_cpu_enable_sse ();
|
||||
void aes_hw_cpu_decrypt (const byte *ks, byte *data);
|
||||
void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data);
|
||||
void aes_hw_cpu_encrypt (const byte *ks, byte *data);
|
||||
void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // TC_HEADER_Crypto_Aes_Hw_Cpu
|
||||
907
src/Crypto/Aes_x64.asm
Normal file
907
src/Crypto/Aes_x64.asm
Normal file
@@ -0,0 +1,907 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; LICENSE TERMS
|
||||
;
|
||||
; The free distribution and use of this software is allowed (with or without
|
||||
; changes) provided that:
|
||||
;
|
||||
; 1. source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; 2. binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation;
|
||||
;
|
||||
; 3. the name of the copyright holder is not used to endorse products
|
||||
; built using this software without specific written permission.
|
||||
;
|
||||
; DISCLAIMER
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its properties, including, but not limited to, correctness
|
||||
; and/or fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue 20/12/2007
|
||||
;
|
||||
; I am grateful to Dag Arne Osvik for many discussions of the techniques that
|
||||
; can be used to optimise AES assembler code on AMD64/EM64T architectures.
|
||||
; Some of the techniques used in this implementation are the result of
|
||||
; suggestions made by him for which I am most grateful.
|
||||
|
||||
;
|
||||
; Adapted for TrueCrypt:
|
||||
; - Compatibility with NASM
|
||||
;
|
||||
|
||||
; An AES implementation for AMD64 processors using the YASM assembler. This
|
||||
; implemetation provides only encryption, decryption and hence requires key
|
||||
; scheduling support in C. It uses 8k bytes of tables but its encryption and
|
||||
; decryption performance is very close to that obtained using large tables.
|
||||
; It can use either Windows or Gnu/Linux calling conventions, which are as
|
||||
; follows:
|
||||
; windows gnu/linux
|
||||
;
|
||||
; in_blk rcx rdi
|
||||
; out_blk rdx rsi
|
||||
; context (cx) r8 rdx
|
||||
;
|
||||
; preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15
|
||||
; registers rdi - on both
|
||||
;
|
||||
; destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11
|
||||
; registers - rdi on both
|
||||
;
|
||||
; The default convention is that for windows, the gnu/linux convention being
|
||||
; used if __GNUC__ is defined.
|
||||
;
|
||||
; Define _SEH_ to include support for Win64 structured exception handling
|
||||
; (this requires YASM version 0.6 or later).
|
||||
;
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. It uses the Microsoft C AMD64 calling
|
||||
; conventions in which the three parameters are placed in rcx, rdx and r8
|
||||
; respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
;
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header file aes.h
|
||||
|
||||
; %define AES_128 ; define if AES with 128 bit keys is needed
|
||||
; %define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
; %define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
%define AES_REV_DKS ; define if key decryption schedule is reversed
|
||||
%define LAST_ROUND_TABLES ; define for the faster version using extra tables
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling provided here
|
||||
; is used.
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the sutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
;%define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
%define r0 rax
|
||||
%define r1 rdx
|
||||
%define r2 rcx
|
||||
%define r3 rbx
|
||||
%define r4 rsi
|
||||
%define r5 rdi
|
||||
%define r6 rbp
|
||||
%define r7 rsp
|
||||
|
||||
%define raxd eax
|
||||
%define rdxd edx
|
||||
%define rcxd ecx
|
||||
%define rbxd ebx
|
||||
%define rsid esi
|
||||
%define rdid edi
|
||||
%define rbpd ebp
|
||||
%define rspd esp
|
||||
|
||||
%define raxb al
|
||||
%define rdxb dl
|
||||
%define rcxb cl
|
||||
%define rbxb bl
|
||||
%define rsib sil
|
||||
%define rdib dil
|
||||
%define rbpb bpl
|
||||
%define rspb spl
|
||||
|
||||
%define r0h ah
|
||||
%define r1h dh
|
||||
%define r2h ch
|
||||
%define r3h bh
|
||||
|
||||
%define r0d eax
|
||||
%define r1d edx
|
||||
%define r2d ecx
|
||||
%define r3d ebx
|
||||
|
||||
; finite field multiplies by {02}, {04} and {08}
|
||||
|
||||
%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
|
||||
%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
|
||||
%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
|
||||
|
||||
; finite field multiplies required in table generation
|
||||
|
||||
%define f3(x) (f2(x) ^ x)
|
||||
%define f9(x) (f8(x) ^ x)
|
||||
%define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
%define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
; macro for expanding S-box data
|
||||
|
||||
%macro enc_vals 1
|
||||
db %1(0x63),%1(0x7c),%1(0x77),%1(0x7b),%1(0xf2),%1(0x6b),%1(0x6f),%1(0xc5)
|
||||
db %1(0x30),%1(0x01),%1(0x67),%1(0x2b),%1(0xfe),%1(0xd7),%1(0xab),%1(0x76)
|
||||
db %1(0xca),%1(0x82),%1(0xc9),%1(0x7d),%1(0xfa),%1(0x59),%1(0x47),%1(0xf0)
|
||||
db %1(0xad),%1(0xd4),%1(0xa2),%1(0xaf),%1(0x9c),%1(0xa4),%1(0x72),%1(0xc0)
|
||||
db %1(0xb7),%1(0xfd),%1(0x93),%1(0x26),%1(0x36),%1(0x3f),%1(0xf7),%1(0xcc)
|
||||
db %1(0x34),%1(0xa5),%1(0xe5),%1(0xf1),%1(0x71),%1(0xd8),%1(0x31),%1(0x15)
|
||||
db %1(0x04),%1(0xc7),%1(0x23),%1(0xc3),%1(0x18),%1(0x96),%1(0x05),%1(0x9a)
|
||||
db %1(0x07),%1(0x12),%1(0x80),%1(0xe2),%1(0xeb),%1(0x27),%1(0xb2),%1(0x75)
|
||||
db %1(0x09),%1(0x83),%1(0x2c),%1(0x1a),%1(0x1b),%1(0x6e),%1(0x5a),%1(0xa0)
|
||||
db %1(0x52),%1(0x3b),%1(0xd6),%1(0xb3),%1(0x29),%1(0xe3),%1(0x2f),%1(0x84)
|
||||
db %1(0x53),%1(0xd1),%1(0x00),%1(0xed),%1(0x20),%1(0xfc),%1(0xb1),%1(0x5b)
|
||||
db %1(0x6a),%1(0xcb),%1(0xbe),%1(0x39),%1(0x4a),%1(0x4c),%1(0x58),%1(0xcf)
|
||||
db %1(0xd0),%1(0xef),%1(0xaa),%1(0xfb),%1(0x43),%1(0x4d),%1(0x33),%1(0x85)
|
||||
db %1(0x45),%1(0xf9),%1(0x02),%1(0x7f),%1(0x50),%1(0x3c),%1(0x9f),%1(0xa8)
|
||||
db %1(0x51),%1(0xa3),%1(0x40),%1(0x8f),%1(0x92),%1(0x9d),%1(0x38),%1(0xf5)
|
||||
db %1(0xbc),%1(0xb6),%1(0xda),%1(0x21),%1(0x10),%1(0xff),%1(0xf3),%1(0xd2)
|
||||
db %1(0xcd),%1(0x0c),%1(0x13),%1(0xec),%1(0x5f),%1(0x97),%1(0x44),%1(0x17)
|
||||
db %1(0xc4),%1(0xa7),%1(0x7e),%1(0x3d),%1(0x64),%1(0x5d),%1(0x19),%1(0x73)
|
||||
db %1(0x60),%1(0x81),%1(0x4f),%1(0xdc),%1(0x22),%1(0x2a),%1(0x90),%1(0x88)
|
||||
db %1(0x46),%1(0xee),%1(0xb8),%1(0x14),%1(0xde),%1(0x5e),%1(0x0b),%1(0xdb)
|
||||
db %1(0xe0),%1(0x32),%1(0x3a),%1(0x0a),%1(0x49),%1(0x06),%1(0x24),%1(0x5c)
|
||||
db %1(0xc2),%1(0xd3),%1(0xac),%1(0x62),%1(0x91),%1(0x95),%1(0xe4),%1(0x79)
|
||||
db %1(0xe7),%1(0xc8),%1(0x37),%1(0x6d),%1(0x8d),%1(0xd5),%1(0x4e),%1(0xa9)
|
||||
db %1(0x6c),%1(0x56),%1(0xf4),%1(0xea),%1(0x65),%1(0x7a),%1(0xae),%1(0x08)
|
||||
db %1(0xba),%1(0x78),%1(0x25),%1(0x2e),%1(0x1c),%1(0xa6),%1(0xb4),%1(0xc6)
|
||||
db %1(0xe8),%1(0xdd),%1(0x74),%1(0x1f),%1(0x4b),%1(0xbd),%1(0x8b),%1(0x8a)
|
||||
db %1(0x70),%1(0x3e),%1(0xb5),%1(0x66),%1(0x48),%1(0x03),%1(0xf6),%1(0x0e)
|
||||
db %1(0x61),%1(0x35),%1(0x57),%1(0xb9),%1(0x86),%1(0xc1),%1(0x1d),%1(0x9e)
|
||||
db %1(0xe1),%1(0xf8),%1(0x98),%1(0x11),%1(0x69),%1(0xd9),%1(0x8e),%1(0x94)
|
||||
db %1(0x9b),%1(0x1e),%1(0x87),%1(0xe9),%1(0xce),%1(0x55),%1(0x28),%1(0xdf)
|
||||
db %1(0x8c),%1(0xa1),%1(0x89),%1(0x0d),%1(0xbf),%1(0xe6),%1(0x42),%1(0x68)
|
||||
db %1(0x41),%1(0x99),%1(0x2d),%1(0x0f),%1(0xb0),%1(0x54),%1(0xbb),%1(0x16)
|
||||
%endmacro
|
||||
|
||||
%macro dec_vals 1
|
||||
db %1(0x52),%1(0x09),%1(0x6a),%1(0xd5),%1(0x30),%1(0x36),%1(0xa5),%1(0x38)
|
||||
db %1(0xbf),%1(0x40),%1(0xa3),%1(0x9e),%1(0x81),%1(0xf3),%1(0xd7),%1(0xfb)
|
||||
db %1(0x7c),%1(0xe3),%1(0x39),%1(0x82),%1(0x9b),%1(0x2f),%1(0xff),%1(0x87)
|
||||
db %1(0x34),%1(0x8e),%1(0x43),%1(0x44),%1(0xc4),%1(0xde),%1(0xe9),%1(0xcb)
|
||||
db %1(0x54),%1(0x7b),%1(0x94),%1(0x32),%1(0xa6),%1(0xc2),%1(0x23),%1(0x3d)
|
||||
db %1(0xee),%1(0x4c),%1(0x95),%1(0x0b),%1(0x42),%1(0xfa),%1(0xc3),%1(0x4e)
|
||||
db %1(0x08),%1(0x2e),%1(0xa1),%1(0x66),%1(0x28),%1(0xd9),%1(0x24),%1(0xb2)
|
||||
db %1(0x76),%1(0x5b),%1(0xa2),%1(0x49),%1(0x6d),%1(0x8b),%1(0xd1),%1(0x25)
|
||||
db %1(0x72),%1(0xf8),%1(0xf6),%1(0x64),%1(0x86),%1(0x68),%1(0x98),%1(0x16)
|
||||
db %1(0xd4),%1(0xa4),%1(0x5c),%1(0xcc),%1(0x5d),%1(0x65),%1(0xb6),%1(0x92)
|
||||
db %1(0x6c),%1(0x70),%1(0x48),%1(0x50),%1(0xfd),%1(0xed),%1(0xb9),%1(0xda)
|
||||
db %1(0x5e),%1(0x15),%1(0x46),%1(0x57),%1(0xa7),%1(0x8d),%1(0x9d),%1(0x84)
|
||||
db %1(0x90),%1(0xd8),%1(0xab),%1(0x00),%1(0x8c),%1(0xbc),%1(0xd3),%1(0x0a)
|
||||
db %1(0xf7),%1(0xe4),%1(0x58),%1(0x05),%1(0xb8),%1(0xb3),%1(0x45),%1(0x06)
|
||||
db %1(0xd0),%1(0x2c),%1(0x1e),%1(0x8f),%1(0xca),%1(0x3f),%1(0x0f),%1(0x02)
|
||||
db %1(0xc1),%1(0xaf),%1(0xbd),%1(0x03),%1(0x01),%1(0x13),%1(0x8a),%1(0x6b)
|
||||
db %1(0x3a),%1(0x91),%1(0x11),%1(0x41),%1(0x4f),%1(0x67),%1(0xdc),%1(0xea)
|
||||
db %1(0x97),%1(0xf2),%1(0xcf),%1(0xce),%1(0xf0),%1(0xb4),%1(0xe6),%1(0x73)
|
||||
db %1(0x96),%1(0xac),%1(0x74),%1(0x22),%1(0xe7),%1(0xad),%1(0x35),%1(0x85)
|
||||
db %1(0xe2),%1(0xf9),%1(0x37),%1(0xe8),%1(0x1c),%1(0x75),%1(0xdf),%1(0x6e)
|
||||
db %1(0x47),%1(0xf1),%1(0x1a),%1(0x71),%1(0x1d),%1(0x29),%1(0xc5),%1(0x89)
|
||||
db %1(0x6f),%1(0xb7),%1(0x62),%1(0x0e),%1(0xaa),%1(0x18),%1(0xbe),%1(0x1b)
|
||||
db %1(0xfc),%1(0x56),%1(0x3e),%1(0x4b),%1(0xc6),%1(0xd2),%1(0x79),%1(0x20)
|
||||
db %1(0x9a),%1(0xdb),%1(0xc0),%1(0xfe),%1(0x78),%1(0xcd),%1(0x5a),%1(0xf4)
|
||||
db %1(0x1f),%1(0xdd),%1(0xa8),%1(0x33),%1(0x88),%1(0x07),%1(0xc7),%1(0x31)
|
||||
db %1(0xb1),%1(0x12),%1(0x10),%1(0x59),%1(0x27),%1(0x80),%1(0xec),%1(0x5f)
|
||||
db %1(0x60),%1(0x51),%1(0x7f),%1(0xa9),%1(0x19),%1(0xb5),%1(0x4a),%1(0x0d)
|
||||
db %1(0x2d),%1(0xe5),%1(0x7a),%1(0x9f),%1(0x93),%1(0xc9),%1(0x9c),%1(0xef)
|
||||
db %1(0xa0),%1(0xe0),%1(0x3b),%1(0x4d),%1(0xae),%1(0x2a),%1(0xf5),%1(0xb0)
|
||||
db %1(0xc8),%1(0xeb),%1(0xbb),%1(0x3c),%1(0x83),%1(0x53),%1(0x99),%1(0x61)
|
||||
db %1(0x17),%1(0x2b),%1(0x04),%1(0x7e),%1(0xba),%1(0x77),%1(0xd6),%1(0x26)
|
||||
db %1(0xe1),%1(0x69),%1(0x14),%1(0x63),%1(0x55),%1(0x21),%1(0x0c),%1(0x7d)
|
||||
%endmacro
|
||||
|
||||
%define u8(x) f2(x), x, x, f3(x), f2(x), x, x, f3(x)
|
||||
%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
|
||||
%define w8(x) x, 0, 0, 0, x, 0, 0, 0
|
||||
|
||||
%define tptr rbp ; table pointer
|
||||
%define kptr r8 ; key schedule pointer
|
||||
%define fofs 128 ; adjust offset in key schedule to keep |disp| < 128
|
||||
%define fk_ref(x,y) [kptr-16*x+fofs+4*y]
|
||||
%ifdef AES_REV_DKS
|
||||
%define rofs 128
|
||||
%define ik_ref(x,y) [kptr-16*x+rofs+4*y]
|
||||
%else
|
||||
%define rofs -128
|
||||
%define ik_ref(x,y) [kptr+16*x+rofs+4*y]
|
||||
%endif
|
||||
|
||||
%define tab_0(x) [tptr+8*x]
|
||||
%define tab_1(x) [tptr+8*x+3]
|
||||
%define tab_2(x) [tptr+8*x+2]
|
||||
%define tab_3(x) [tptr+8*x+1]
|
||||
%define tab_f(x) byte [tptr+8*x+1]
|
||||
%define tab_i(x) byte [tptr+8*x+7]
|
||||
%define t_ref(x,r) tab_ %+ x(r)
|
||||
|
||||
%macro ff_rnd 5 ; normal forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
add tptr, 2048
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro fl_rnd 5 ; last forward round
|
||||
mov %1d, fk_ref(%5,0)
|
||||
mov %2d, fk_ref(%5,1)
|
||||
mov %3d, fk_ref(%5,2)
|
||||
mov %4d, fk_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %3d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(f,rsi)
|
||||
movzx edi, t_ref(f,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %1d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro ii_rnd 5 ; normal inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
|
||||
mov eax,%1d
|
||||
mov ebx,%2d
|
||||
mov ecx,%3d
|
||||
mov edx,%4d
|
||||
%endmacro
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
add tptr, 2048
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
shr eax, 16
|
||||
xor %1d, t_ref(0,rsi)
|
||||
xor %2d, t_ref(1,rdi)
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
xor %3d, t_ref(2,rsi)
|
||||
xor %4d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
shr ebx, 16
|
||||
xor %2d, t_ref(0,rsi)
|
||||
xor %3d, t_ref(1,rdi)
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
xor %4d, t_ref(2,rsi)
|
||||
xor %1d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
shr ecx, 16
|
||||
xor %3d, t_ref(0,rsi)
|
||||
xor %4d, t_ref(1,rdi)
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
xor %1d, t_ref(2,rsi)
|
||||
xor %2d, t_ref(3,rdi)
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
shr edx, 16
|
||||
xor %4d, t_ref(0,rsi)
|
||||
xor %1d, t_ref(1,rdi)
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
xor %2d, t_ref(2,rsi)
|
||||
xor %3d, t_ref(3,rdi)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro il_rnd 5 ; last inverse round
|
||||
mov %1d, ik_ref(%5,0)
|
||||
mov %2d, ik_ref(%5,1)
|
||||
mov %3d, ik_ref(%5,2)
|
||||
mov %4d, ik_ref(%5,3)
|
||||
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr eax, 16
|
||||
xor %1d, esi
|
||||
rol edi, 8
|
||||
xor %2d, edi
|
||||
movzx esi, al
|
||||
movzx edi, ah
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %3d, esi
|
||||
xor %4d, edi
|
||||
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ebx, 16
|
||||
xor %2d, esi
|
||||
rol edi, 8
|
||||
xor %3d, edi
|
||||
movzx esi, bl
|
||||
movzx edi, bh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %4d, esi
|
||||
xor %1d, edi
|
||||
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr ecx, 16
|
||||
xor %3d, esi
|
||||
rol edi, 8
|
||||
xor %4d, edi
|
||||
movzx esi, cl
|
||||
movzx edi, ch
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %1d, esi
|
||||
xor %2d, edi
|
||||
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
shr edx, 16
|
||||
xor %4d, esi
|
||||
rol edi, 8
|
||||
xor %1d, edi
|
||||
movzx esi, dl
|
||||
movzx edi, dh
|
||||
movzx esi, t_ref(i,rsi)
|
||||
movzx edi, t_ref(i,rdi)
|
||||
rol esi, 16
|
||||
rol edi, 24
|
||||
xor %2d, esi
|
||||
xor %3d, edi
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
global aes_encrypt
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_encrypt
|
||||
%endif
|
||||
|
||||
section .data align=64
|
||||
align 64
|
||||
enc_tab:
|
||||
enc_vals u8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
enc_vals w8
|
||||
%endif
|
||||
|
||||
section .text align=16
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_encrypt
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_encrypt:
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi, byte [kptr+4*KS_LENGTH]
|
||||
lea tptr, [rel enc_tab]
|
||||
sub kptr, fofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
xor eax, [kptr+fofs]
|
||||
xor ebx, [kptr+fofs+4]
|
||||
xor ecx, [kptr+fofs+8]
|
||||
xor edx, [kptr+fofs+12]
|
||||
|
||||
lea kptr,[kptr+rsi]
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ff_rnd r9, r10, r11, r12, 13
|
||||
ff_rnd r9, r10, r11, r12, 12
|
||||
.2: ff_rnd r9, r10, r11, r12, 11
|
||||
ff_rnd r9, r10, r11, r12, 10
|
||||
.3: ff_rnd r9, r10, r11, r12, 9
|
||||
ff_rnd r9, r10, r11, r12, 8
|
||||
ff_rnd r9, r10, r11, r12, 7
|
||||
ff_rnd r9, r10, r11, r12, 6
|
||||
ff_rnd r9, r10, r11, r12, 5
|
||||
ff_rnd r9, r10, r11, r12, 4
|
||||
ff_rnd r9, r10, r11, r12, 3
|
||||
ff_rnd r9, r10, r11, r12, 2
|
||||
ff_rnd r9, r10, r11, r12, 1
|
||||
fl_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4:
|
||||
mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
global aes_decrypt
|
||||
%ifdef DLL_EXPORT
|
||||
export aes_decrypt
|
||||
%endif
|
||||
|
||||
section .data
|
||||
align 64
|
||||
dec_tab:
|
||||
dec_vals v8
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
dec_vals w8
|
||||
%endif
|
||||
|
||||
section .text
|
||||
align 16
|
||||
|
||||
%ifdef _SEH_
|
||||
proc_frame aes_decrypt
|
||||
alloc_stack 7*8 ; 7 to align stack to 16 bytes
|
||||
save_reg rsi,4*8
|
||||
save_reg rdi,5*8
|
||||
save_reg rbx,1*8
|
||||
save_reg rbp,2*8
|
||||
save_reg r12,3*8
|
||||
end_prologue
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%else
|
||||
aes_decrypt:
|
||||
%ifdef __GNUC__
|
||||
sub rsp, 4*8 ; gnu/linux binary interface
|
||||
mov [rsp+0*8], rsi ; output pointer
|
||||
mov r8, rdx ; context
|
||||
%else
|
||||
sub rsp, 6*8 ; windows binary interface
|
||||
mov [rsp+4*8], rsi
|
||||
mov [rsp+5*8], rdi
|
||||
mov rdi, rcx ; input pointer
|
||||
mov [rsp+0*8], rdx ; output pointer
|
||||
%endif
|
||||
mov [rsp+1*8], rbx ; input pointer in rdi
|
||||
mov [rsp+2*8], rbp ; output pointer in [rsp]
|
||||
mov [rsp+3*8], r12 ; context in r8
|
||||
%endif
|
||||
|
||||
movzx esi,byte[kptr+4*KS_LENGTH]
|
||||
lea tptr, [rel dec_tab]
|
||||
sub kptr, rofs
|
||||
|
||||
mov eax, [rdi+0*4]
|
||||
mov ebx, [rdi+1*4]
|
||||
mov ecx, [rdi+2*4]
|
||||
mov edx, [rdi+3*4]
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
mov rdi, kptr
|
||||
lea kptr,[kptr+rsi]
|
||||
%else
|
||||
lea rdi,[kptr+rsi]
|
||||
%endif
|
||||
|
||||
xor eax, [rdi+rofs]
|
||||
xor ebx, [rdi+rofs+4]
|
||||
xor ecx, [rdi+rofs+8]
|
||||
xor edx, [rdi+rofs+12]
|
||||
|
||||
cmp esi, 10*16
|
||||
je .3
|
||||
cmp esi, 12*16
|
||||
je .2
|
||||
cmp esi, 14*16
|
||||
je .1
|
||||
mov rax, -1
|
||||
jmp .4
|
||||
|
||||
.1: ii_rnd r9, r10, r11, r12, 13
|
||||
ii_rnd r9, r10, r11, r12, 12
|
||||
.2: ii_rnd r9, r10, r11, r12, 11
|
||||
ii_rnd r9, r10, r11, r12, 10
|
||||
.3: ii_rnd r9, r10, r11, r12, 9
|
||||
ii_rnd r9, r10, r11, r12, 8
|
||||
ii_rnd r9, r10, r11, r12, 7
|
||||
ii_rnd r9, r10, r11, r12, 6
|
||||
ii_rnd r9, r10, r11, r12, 5
|
||||
ii_rnd r9, r10, r11, r12, 4
|
||||
ii_rnd r9, r10, r11, r12, 3
|
||||
ii_rnd r9, r10, r11, r12, 2
|
||||
ii_rnd r9, r10, r11, r12, 1
|
||||
il_rnd r9, r10, r11, r12, 0
|
||||
|
||||
mov rbx, [rsp]
|
||||
mov [rbx], r9d
|
||||
mov [rbx+4], r10d
|
||||
mov [rbx+8], r11d
|
||||
mov [rbx+12], r12d
|
||||
xor rax, rax
|
||||
.4: mov rbx, [rsp+1*8]
|
||||
mov rbp, [rsp+2*8]
|
||||
mov r12, [rsp+3*8]
|
||||
%ifdef __GNUC__
|
||||
add rsp, 4*8
|
||||
ret
|
||||
%else
|
||||
mov rsi, [rsp+4*8]
|
||||
mov rdi, [rsp+5*8]
|
||||
%ifdef _SEH_
|
||||
add rsp, 7*8
|
||||
ret
|
||||
endproc_frame
|
||||
%else
|
||||
add rsp, 6*8
|
||||
ret
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%endif
|
||||
646
src/Crypto/Aes_x86.asm
Normal file
646
src/Crypto/Aes_x86.asm
Normal file
@@ -0,0 +1,646 @@
|
||||
|
||||
; ---------------------------------------------------------------------------
|
||||
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
;
|
||||
; LICENSE TERMS
|
||||
;
|
||||
; The free distribution and use of this software is allowed (with or without
|
||||
; changes) provided that:
|
||||
;
|
||||
; 1. source code distributions include the above copyright notice, this
|
||||
; list of conditions and the following disclaimer;
|
||||
;
|
||||
; 2. binary distributions include the above copyright notice, this list
|
||||
; of conditions and the following disclaimer in their documentation;
|
||||
;
|
||||
; 3. the name of the copyright holder is not used to endorse products
|
||||
; built using this software without specific written permission.
|
||||
;
|
||||
; DISCLAIMER
|
||||
;
|
||||
; This software is provided 'as is' with no explicit or implied warranties
|
||||
; in respect of its properties, including, but not limited to, correctness
|
||||
; and/or fitness for purpose.
|
||||
; ---------------------------------------------------------------------------
|
||||
; Issue 20/12/2007
|
||||
;
|
||||
; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
|
||||
; aeskey.c and aestab.c for support.
|
||||
|
||||
;
|
||||
; Adapted for TrueCrypt:
|
||||
; - Compatibility with NASM and GCC
|
||||
;
|
||||
|
||||
; An AES implementation for x86 processors using the YASM (or NASM) assembler.
|
||||
; This is an assembler implementation that covers encryption and decryption
|
||||
; only and is intended as a replacement of the C file aescrypt.c. It hence
|
||||
; requires the file aeskey.c for keying and aestab.c for the AES tables. It
|
||||
; employs full tables rather than compressed tables.
|
||||
|
||||
; This code provides the standard AES block size (128 bits, 16 bytes) and the
|
||||
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
|
||||
; interface as my C implementation. The ebx, esi, edi and ebp registers are
|
||||
; preserved across calls but eax, ecx and edx and the artihmetic status flags
|
||||
; are not. It is also important that the defines below match those used in the
|
||||
; C code. This code uses the VC++ register saving conentions; if it is used
|
||||
; with another compiler, conventions for using and saving registers may need to
|
||||
; be checked (and calling conventions). The YASM command line for the VC++
|
||||
; custom build step is:
|
||||
;
|
||||
; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
|
||||
;
|
||||
; The calling intefaces are:
|
||||
;
|
||||
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
|
||||
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_encrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
|
||||
; const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_encrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; AES_RETURN aes_decrypt_key(const unsigned char key[],
|
||||
; unsigned int len, const aes_decrypt_ctx cx[1]);
|
||||
;
|
||||
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
|
||||
; either bits or bytes.
|
||||
;
|
||||
; Comment in/out the following lines to obtain the desired subroutines. These
|
||||
; selections MUST match those in the C header file aes.h
|
||||
|
||||
; %define AES_128 ; define if AES with 128 bit keys is needed
|
||||
; %define AES_192 ; define if AES with 192 bit keys is needed
|
||||
%define AES_256 ; define if AES with 256 bit keys is needed
|
||||
; %define AES_VAR ; define if a variable key size is needed
|
||||
%define ENCRYPTION ; define if encryption is needed
|
||||
%define DECRYPTION ; define if decryption is needed
|
||||
%define AES_REV_DKS ; define if key decryption schedule is reversed
|
||||
%define LAST_ROUND_TABLES ; define if tables are to be used for last round
|
||||
|
||||
; offsets to parameters
|
||||
|
||||
in_blk equ 4 ; input byte array address parameter
|
||||
out_blk equ 8 ; output byte array address parameter
|
||||
ctx equ 12 ; AES context structure
|
||||
stk_spc equ 20 ; stack space
|
||||
%define parms 12 ; parameter space on stack
|
||||
|
||||
; The encryption key schedule has the following in memory layout where N is the
|
||||
; number of rounds (10, 12 or 14):
|
||||
;
|
||||
; lo: | input key (round 0) | ; each round is four 32-bit words
|
||||
; | encryption round 1 |
|
||||
; | encryption round 2 |
|
||||
; ....
|
||||
; | encryption round N-1 |
|
||||
; hi: | encryption round N |
|
||||
;
|
||||
; The decryption key schedule is normally set up so that it has the same
|
||||
; layout as above by actually reversing the order of the encryption key
|
||||
; schedule in memory (this happens when AES_REV_DKS is set):
|
||||
;
|
||||
; lo: | decryption round 0 | = | encryption round N |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; hi: | decryption round N | = | input key (round 0) |
|
||||
;
|
||||
; with rounds except the first and last modified using inv_mix_column()
|
||||
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
|
||||
; encryption so that it has to be accessed in reverse when used for
|
||||
; decryption (although the inverse mix column modifications are done)
|
||||
;
|
||||
; lo: | decryption round 0 | = | input key (round 0) |
|
||||
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
|
||||
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
|
||||
; .... ....
|
||||
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
|
||||
; hi: | decryption round N | = | encryption round N |
|
||||
;
|
||||
; This layout is faster when the assembler key scheduling provided here
|
||||
; is used.
|
||||
;
|
||||
; The DLL interface must use the _stdcall convention in which the number
|
||||
; of bytes of parameter space is added after an @ to the sutine's name.
|
||||
; We must also remove our parameters from the stack before return (see
|
||||
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
|
||||
|
||||
;%define DLL_EXPORT
|
||||
|
||||
; End of user defines
|
||||
|
||||
%ifdef AES_VAR
|
||||
%ifndef AES_128
|
||||
%define AES_128
|
||||
%endif
|
||||
%ifndef AES_192
|
||||
%define AES_192
|
||||
%endif
|
||||
%ifndef AES_256
|
||||
%define AES_256
|
||||
%endif
|
||||
%endif
|
||||
|
||||
%ifdef AES_VAR
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_256
|
||||
%define KS_LENGTH 60
|
||||
%elifdef AES_192
|
||||
%define KS_LENGTH 52
|
||||
%else
|
||||
%define KS_LENGTH 44
|
||||
%endif
|
||||
|
||||
; These macros implement stack based local variables
|
||||
|
||||
%macro save 2
|
||||
mov [esp+4*%1],%2
|
||||
%endmacro
|
||||
|
||||
%macro restore 2
|
||||
mov %1,[esp+4*%2]
|
||||
%endmacro
|
||||
|
||||
; the DLL has to implement the _stdcall calling interface on return
|
||||
; In this case we have to take our parameters (3 4-byte pointers)
|
||||
; off the stack
|
||||
|
||||
%macro do_name 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
align 32
|
||||
global %1
|
||||
%1:
|
||||
%else
|
||||
align 32
|
||||
global %1@%2
|
||||
export _%1@%2
|
||||
%1@%2:
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_call 1-2 parms
|
||||
%ifndef DLL_EXPORT
|
||||
call %1
|
||||
add esp,%2
|
||||
%else
|
||||
call %1@%2
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%macro do_exit 0-1 parms
|
||||
%ifdef DLL_EXPORT
|
||||
ret %1
|
||||
%else
|
||||
ret
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%ifdef ENCRYPTION
|
||||
|
||||
extern t_fn
|
||||
|
||||
%define etab_0(x) [t_fn+4*x]
|
||||
%define etab_1(x) [t_fn+1024+4*x]
|
||||
%define etab_2(x) [t_fn+2048+4*x]
|
||||
%define etab_3(x) [t_fn+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern t_fl
|
||||
|
||||
%define eltab_0(x) [t_fl+4*x]
|
||||
%define eltab_1(x) [t_fl+1024+4*x]
|
||||
%define eltab_2(x) [t_fl+2048+4*x]
|
||||
%define eltab_3(x) [t_fl+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
%define etab_b(x) byte [t_fn+3072+4*x]
|
||||
|
||||
%endif
|
||||
|
||||
; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
|
||||
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
|
||||
;
|
||||
; Input:
|
||||
;
|
||||
; EAX column[0]
|
||||
; EBX column[1]
|
||||
; ECX column[2]
|
||||
; EDX column[3]
|
||||
; ESI column key[round][2]
|
||||
; EDI column key[round][3]
|
||||
; EBP scratch
|
||||
;
|
||||
; Output:
|
||||
;
|
||||
; EBP column[0] unkeyed
|
||||
; EBX column[1] unkeyed
|
||||
; ESI column[2] keyed
|
||||
; EDI column[3] keyed
|
||||
; EAX scratch
|
||||
; ECX scratch
|
||||
; EDX scratch
|
||||
|
||||
%macro rnd_fun 2
|
||||
|
||||
rol ebx,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, dh, 1, ebp
|
||||
%1 esi, bh, 3, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ah, 1, ebp
|
||||
%1 edi, bl, 2, ebp
|
||||
%2 ebp, al, 0, ebp
|
||||
shr ebx,16
|
||||
and eax,0xffff0000
|
||||
or eax,ebx
|
||||
shr edx,16
|
||||
%1 ebp, ah, 1, ebx
|
||||
%1 ebp, dh, 3, ebx
|
||||
%2 ebx, dl, 2, ebx
|
||||
%1 ebx, ch, 1, edx
|
||||
%1 ebx, al, 0, edx
|
||||
shr eax,16
|
||||
shr ecx,16
|
||||
%1 ebp, cl, 2, edx
|
||||
%1 edi, ch, 3, edx
|
||||
%1 esi, al, 2, edx
|
||||
%1 ebx, ah, 3, edx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro nr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro nr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,etab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,eltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro lr_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro lr_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,etab_b(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro enc_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun nr_xor, nr_mov
|
||||
|
||||
mov eax,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro enc_last_round 0
|
||||
|
||||
add ebp,16
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
rnd_fun lr_xor, lr_mov
|
||||
|
||||
mov eax,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
section .text align=32
|
||||
|
||||
; AES Encryption Subroutine
|
||||
|
||||
do_name aes_encrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte [ebp+4*KS_LENGTH]
|
||||
xor eax,[ebp ]
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: enc_round
|
||||
enc_round
|
||||
.2: enc_round
|
||||
enc_round
|
||||
.3: enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_round
|
||||
enc_last_round
|
||||
|
||||
mov edx,[esp+out_blk+stk_spc]
|
||||
mov [edx],eax
|
||||
mov [edx+4],ebx
|
||||
mov [edx+8],esi
|
||||
mov [edx+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
|
||||
%ifdef DECRYPTION
|
||||
|
||||
extern t_in
|
||||
|
||||
%define dtab_0(x) [t_in+4*x]
|
||||
%define dtab_1(x) [t_in+1024+4*x]
|
||||
%define dtab_2(x) [t_in+2048+4*x]
|
||||
%define dtab_3(x) [t_in+3072+4*x]
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
extern t_il
|
||||
|
||||
%define dltab_0(x) [t_il+4*x]
|
||||
%define dltab_1(x) [t_il+1024+4*x]
|
||||
%define dltab_2(x) [t_il+2048+4*x]
|
||||
%define dltab_3(x) [t_il+3072+4*x]
|
||||
|
||||
%else
|
||||
|
||||
extern _t_ibox
|
||||
|
||||
%define dtab_x(x) byte [_t_ibox+x]
|
||||
|
||||
%endif
|
||||
|
||||
%macro irn_fun 2
|
||||
|
||||
rol eax,16
|
||||
%1 esi, cl, 0, ebp
|
||||
%1 esi, bh, 1, ebp
|
||||
%1 esi, al, 2, ebp
|
||||
%1 edi, dl, 0, ebp
|
||||
%1 edi, ch, 1, ebp
|
||||
%1 edi, ah, 3, ebp
|
||||
%2 ebp, bl, 0, ebp
|
||||
shr eax,16
|
||||
and ebx,0xffff0000
|
||||
or ebx,eax
|
||||
shr ecx,16
|
||||
%1 ebp, bh, 1, eax
|
||||
%1 ebp, ch, 3, eax
|
||||
%2 eax, cl, 2, ecx
|
||||
%1 eax, bl, 0, ecx
|
||||
%1 eax, dh, 1, ecx
|
||||
shr ebx,16
|
||||
shr edx,16
|
||||
%1 esi, dh, 3, ecx
|
||||
%1 ebp, dl, 2, ecx
|
||||
%1 eax, bh, 3, ecx
|
||||
%1 edi, bl, 2, ecx
|
||||
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for normal rounds
|
||||
|
||||
%macro ni_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro ni_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dtab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
; Basic MOV and XOR Operations for last round
|
||||
|
||||
%ifdef LAST_ROUND_TABLES
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
xor %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
mov %1,dltab_%3(%4)
|
||||
%endmacro
|
||||
|
||||
%else
|
||||
|
||||
%macro li_xor 4
|
||||
movzx %4,%2
|
||||
movzx %4,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %4,8*%3
|
||||
%endif
|
||||
xor %1,%4
|
||||
%endmacro
|
||||
|
||||
%macro li_mov 4
|
||||
movzx %4,%2
|
||||
movzx %1,dtab_x(%4)
|
||||
%if %3 != 0
|
||||
shl %1,8*%3
|
||||
%endif
|
||||
%endmacro
|
||||
|
||||
%endif
|
||||
|
||||
%macro dec_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun ni_xor, ni_mov
|
||||
|
||||
mov ebx,ebp
|
||||
mov ecx,esi
|
||||
mov edx,edi
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
%macro dec_last_round 0
|
||||
|
||||
%ifdef AES_REV_DKS
|
||||
add ebp,16
|
||||
%else
|
||||
sub ebp,16
|
||||
%endif
|
||||
save 0,ebp
|
||||
mov esi,[ebp+8]
|
||||
mov edi,[ebp+12]
|
||||
|
||||
irn_fun li_xor, li_mov
|
||||
|
||||
mov ebx,ebp
|
||||
restore ebp,0
|
||||
xor eax,[ebp]
|
||||
xor ebx,[ebp+4]
|
||||
|
||||
%endmacro
|
||||
|
||||
section .text
|
||||
|
||||
; AES Decryption Subroutine
|
||||
|
||||
do_name aes_decrypt
|
||||
|
||||
sub esp,stk_spc
|
||||
mov [esp+16],ebp
|
||||
mov [esp+12],ebx
|
||||
mov [esp+ 8],esi
|
||||
mov [esp+ 4],edi
|
||||
|
||||
; input four columns and xor in first round key
|
||||
|
||||
mov esi,[esp+in_blk+stk_spc] ; input pointer
|
||||
mov eax,[esi ]
|
||||
mov ebx,[esi+ 4]
|
||||
mov ecx,[esi+ 8]
|
||||
mov edx,[esi+12]
|
||||
lea esi,[esi+16]
|
||||
|
||||
mov ebp,[esp+ctx+stk_spc] ; key pointer
|
||||
movzx edi,byte[ebp+4*KS_LENGTH]
|
||||
%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
|
||||
lea ebp,[ebp+edi] ; we have to access it from the top down
|
||||
%endif
|
||||
xor eax,[ebp ] ; key schedule
|
||||
xor ebx,[ebp+ 4]
|
||||
xor ecx,[ebp+ 8]
|
||||
xor edx,[ebp+12]
|
||||
|
||||
; determine the number of rounds
|
||||
|
||||
cmp edi,10*16
|
||||
je .3
|
||||
cmp edi,12*16
|
||||
je .2
|
||||
cmp edi,14*16
|
||||
je .1
|
||||
mov eax,-1
|
||||
jmp .5
|
||||
|
||||
.1: dec_round
|
||||
dec_round
|
||||
.2: dec_round
|
||||
dec_round
|
||||
.3: dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_round
|
||||
dec_last_round
|
||||
|
||||
; move final values to the output array.
|
||||
|
||||
mov ebp,[esp+out_blk+stk_spc]
|
||||
mov [ebp],eax
|
||||
mov [ebp+4],ebx
|
||||
mov [ebp+8],esi
|
||||
mov [ebp+12],edi
|
||||
xor eax,eax
|
||||
|
||||
.5: mov ebp,[esp+16]
|
||||
mov ebx,[esp+12]
|
||||
mov esi,[esp+ 8]
|
||||
mov edi,[esp+ 4]
|
||||
add esp,stk_spc
|
||||
do_exit
|
||||
|
||||
%endif
|
||||
311
src/Crypto/Aescrypt.c
Normal file
311
src/Crypto/Aescrypt.c
Normal file
@@ -0,0 +1,311 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "Aesopt.h"
|
||||
#include "Aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
|
||||
#define so(y,x,c) word_out(y, c, s(x,c))
|
||||
|
||||
#if defined(ARRAYS)
|
||||
#define locals(y,x) x[4],y[4]
|
||||
#else
|
||||
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
|
||||
#endif
|
||||
|
||||
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
|
||||
s(y,2) = s(x,2); s(y,3) = s(x,3);
|
||||
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
|
||||
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
|
||||
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "s", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define fwd_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
|
||||
|
||||
#if defined(FT4_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
|
||||
#elif defined(FT1_SET)
|
||||
#undef dec_fmvars
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(FL4_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
|
||||
#elif defined(FL1_SET)
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
|
||||
#else
|
||||
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
const uint_32t *kp;
|
||||
#if defined( dec_fmvars )
|
||||
dec_fmvars; /* declare variables for fwd_mcol() if needed */
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
#endif
|
||||
|
||||
kp = cx->ks;
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (ENC_UNROLL == FULL)
|
||||
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 12 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
kp += 2 * N_COLS;
|
||||
case 10 * 16:
|
||||
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
|
||||
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
|
||||
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
|
||||
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (ENC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b0, b1, kp);
|
||||
}
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp += N_COLS;
|
||||
round(fwd_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp += N_COLS;
|
||||
round(fwd_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
|
||||
|
||||
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||||
Pentium optimiation with small code but this is poor for decryption
|
||||
so we need to control this with the following VC++ pragmas
|
||||
*/
|
||||
|
||||
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||||
#pragma optimize( "t", on )
|
||||
#endif
|
||||
|
||||
/* Given the column (c) of the output state variable, the following
|
||||
macros give the input state variables which are needed in its
|
||||
computation for each row (r) of the state. All the alternative
|
||||
macros give the same end values but expand into different ways
|
||||
of calculating these values. In particular the complex macro
|
||||
used for dynamically variable block sizes is designed to expand
|
||||
to a compile time constant whenever possible but will expand to
|
||||
conditional clauses on some branches (I am grateful to Frank
|
||||
Yellin for this construction)
|
||||
*/
|
||||
|
||||
#define inv_var(x,r,c)\
|
||||
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||||
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
|
||||
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||||
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
|
||||
|
||||
#if defined(IT4_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
|
||||
#elif defined(IT1_SET)
|
||||
#undef dec_imvars
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
|
||||
#endif
|
||||
|
||||
#if defined(IL4_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
|
||||
#elif defined(IL1_SET)
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
|
||||
#else
|
||||
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
|
||||
#endif
|
||||
|
||||
/* This code can work with the decryption key schedule in the */
|
||||
/* order that is used for encrytpion (where the 1st decryption */
|
||||
/* round key is at the high end ot the schedule) or with a key */
|
||||
/* schedule that has been reversed to put the 1st decryption */
|
||||
/* round key at the low end of the schedule in memory (when */
|
||||
/* AES_REV_DKS is defined) */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define key_ofs 0
|
||||
#define rnd_key(n) (kp + n * N_COLS)
|
||||
#else
|
||||
#define key_ofs 1
|
||||
#define rnd_key(n) (kp - n * N_COLS)
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
|
||||
{ uint_32t locals(b0, b1);
|
||||
#if defined( dec_imvars )
|
||||
dec_imvars; /* declare variables for inv_mcol() if needed */
|
||||
#endif
|
||||
const uint_32t *kp;
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||||
return EXIT_FAILURE;
|
||||
#endif
|
||||
|
||||
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
|
||||
state_in(b0, in, kp);
|
||||
|
||||
#if (DEC_UNROLL == FULL)
|
||||
|
||||
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
|
||||
switch(cx->inf.b[0])
|
||||
{
|
||||
case 14 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-13));
|
||||
round(inv_rnd, b0, b1, rnd_key(-12));
|
||||
case 12 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-11));
|
||||
round(inv_rnd, b0, b1, rnd_key(-10));
|
||||
case 10 * 16:
|
||||
round(inv_rnd, b1, b0, rnd_key(-9));
|
||||
round(inv_rnd, b0, b1, rnd_key(-8));
|
||||
round(inv_rnd, b1, b0, rnd_key(-7));
|
||||
round(inv_rnd, b0, b1, rnd_key(-6));
|
||||
round(inv_rnd, b1, b0, rnd_key(-5));
|
||||
round(inv_rnd, b0, b1, rnd_key(-4));
|
||||
round(inv_rnd, b1, b0, rnd_key(-3));
|
||||
round(inv_rnd, b0, b1, rnd_key(-2));
|
||||
round(inv_rnd, b1, b0, rnd_key(-1));
|
||||
round(inv_lrnd, b0, b1, rnd_key( 0));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#if (DEC_UNROLL == PARTIAL)
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b0, b1, kp);
|
||||
}
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
#else
|
||||
{ uint_32t rnd;
|
||||
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||||
{
|
||||
kp = rnd_key(1);
|
||||
round(inv_rnd, b1, b0, kp);
|
||||
l_copy(b0, b1);
|
||||
}
|
||||
#endif
|
||||
kp = rnd_key(1);
|
||||
round(inv_lrnd, b0, b1, kp);
|
||||
}
|
||||
#endif
|
||||
|
||||
state_out(out, b0);
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
573
src/Crypto/Aeskey.c
Normal file
573
src/Crypto/Aeskey.c
Normal file
@@ -0,0 +1,573 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
#include "Aesopt.h"
|
||||
#include "Aestab.h"
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
# include "aes_via_ace.h"
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Initialise the key schedule from the user supplied key. The key
|
||||
length can be specified in bytes, with legal values of 16, 24
|
||||
and 32, or in bits, with legal values of 128, 192 and 256. These
|
||||
values correspond with Nk values of 4, 6 and 8 respectively.
|
||||
|
||||
The following macros implement a single cycle in the key
|
||||
schedule generation process. The number of cycles needed
|
||||
for each cx->n_col and nk value is:
|
||||
|
||||
nk = 4 5 6 7 8
|
||||
------------------------------
|
||||
cx->n_col = 4 10 9 8 7 7
|
||||
cx->n_col = 5 14 11 10 9 9
|
||||
cx->n_col = 6 19 15 12 11 11
|
||||
cx->n_col = 7 21 19 16 13 14
|
||||
cx->n_col = 8 29 23 19 17 14
|
||||
*/
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
|
||||
#define ke4(k,i) \
|
||||
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
||||
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
||||
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[4];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 9; ++i)
|
||||
ke4(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
||||
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
||||
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
||||
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
||||
ke4(cx->ks, 8);
|
||||
#endif
|
||||
ke4(cx->ks, 9);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
|
||||
#define kef6(k,i) \
|
||||
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
||||
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
||||
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke6(k,i) \
|
||||
{ kef6(k,i); \
|
||||
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
||||
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[6];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 7; ++i)
|
||||
ke6(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
||||
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
||||
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
||||
ke6(cx->ks, 6);
|
||||
#endif
|
||||
kef6(cx->ks, 7);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
|
||||
#define kef8(k,i) \
|
||||
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
||||
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
||||
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define ke8(k,i) \
|
||||
{ kef8(k,i); \
|
||||
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
||||
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
||||
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
|
||||
{ uint_32t ss[8];
|
||||
|
||||
cx->ks[0] = ss[0] = word_in(key, 0);
|
||||
cx->ks[1] = ss[1] = word_in(key, 1);
|
||||
cx->ks[2] = ss[2] = word_in(key, 2);
|
||||
cx->ks[3] = ss[3] = word_in(key, 3);
|
||||
cx->ks[4] = ss[4] = word_in(key, 4);
|
||||
cx->ks[5] = ss[5] = word_in(key, 5);
|
||||
cx->ks[6] = ss[6] = word_in(key, 6);
|
||||
cx->ks[7] = ss[7] = word_in(key, 7);
|
||||
|
||||
#if ENC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 6; ++i)
|
||||
ke8(cx->ks, i);
|
||||
}
|
||||
#else
|
||||
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
||||
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
||||
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
||||
#endif
|
||||
kef8(cx->ks, 6);
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
|
||||
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
#if defined( AES_ERR_CHK )
|
||||
case 16: case 128: return aes_encrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_encrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_encrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
#else
|
||||
case 16: case 128: aes_encrypt_key128(key, cx); return;
|
||||
case 24: case 192: aes_encrypt_key192(key, cx); return;
|
||||
case 32: case 256: aes_encrypt_key256(key, cx); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
|
||||
/* this is used to store the decryption round keys */
|
||||
/* in forward or reverse order */
|
||||
|
||||
#ifdef AES_REV_DKS
|
||||
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
|
||||
#else
|
||||
#define v(n,i) (i)
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES
|
||||
#define ff(x) (x)
|
||||
#else
|
||||
#define ff(x) inv_mcol(x)
|
||||
#if defined( dec_imvars )
|
||||
#define d_vars dec_imvars
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(AES_128) || defined(AES_VAR)
|
||||
|
||||
#define k4e(k,i) \
|
||||
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
|
||||
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
|
||||
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
||||
ss[1] = ss[1] ^ ss[3]; \
|
||||
ss[2] = ss[2] ^ ss[3]; \
|
||||
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; \
|
||||
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
|
||||
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
||||
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
||||
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
|
||||
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
|
||||
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
||||
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
|
||||
k[v(40,(4*(i))+6)] = ss[0]; \
|
||||
k[v(40,(4*(i))+7)] = ss[1]; \
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define kdf4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
|
||||
}
|
||||
|
||||
#define kd4(k,i) \
|
||||
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
|
||||
}
|
||||
|
||||
#define kdl4(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[5];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
{ uint_32t i;
|
||||
for(i = 0; i < 10; ++i)
|
||||
k4e(cx->ks, i);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
||||
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
||||
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
||||
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
||||
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 10 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_192) || defined(AES_VAR)
|
||||
|
||||
#define k6ef(k,i) \
|
||||
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
|
||||
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
|
||||
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k6e(k,i) \
|
||||
{ k6ef(k,i); \
|
||||
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
|
||||
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
|
||||
}
|
||||
|
||||
#define kdf6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
|
||||
}
|
||||
|
||||
#define kd6(k,i) \
|
||||
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
|
||||
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
|
||||
}
|
||||
|
||||
#define kdl6(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[7];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 7; ++i)
|
||||
k6e(cx->ks, i);
|
||||
k6ef(cx->ks, 7);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
||||
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
||||
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
||||
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 12 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_256) || defined(AES_VAR)
|
||||
|
||||
#define k8ef(k,i) \
|
||||
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
|
||||
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
|
||||
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
|
||||
}
|
||||
|
||||
#define k8e(k,i) \
|
||||
{ k8ef(k,i); \
|
||||
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
|
||||
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
|
||||
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
|
||||
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
|
||||
}
|
||||
|
||||
#define kdf8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
|
||||
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
|
||||
}
|
||||
|
||||
#define kd8(k,i) \
|
||||
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
||||
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
|
||||
ss[8] = ls_box(ss[3],0); \
|
||||
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
|
||||
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
|
||||
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
|
||||
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
|
||||
}
|
||||
|
||||
#define kdl8(k,i) \
|
||||
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
|
||||
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
|
||||
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
|
||||
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
|
||||
}
|
||||
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
|
||||
{ uint_32t ss[9];
|
||||
#if defined( d_vars )
|
||||
d_vars;
|
||||
#endif
|
||||
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
|
||||
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
|
||||
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
|
||||
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
|
||||
|
||||
#if DEC_UNROLL == NONE
|
||||
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
|
||||
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
|
||||
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
|
||||
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
|
||||
{ uint_32t i;
|
||||
|
||||
for(i = 0; i < 6; ++i)
|
||||
k8e(cx->ks, i);
|
||||
k8ef(cx->ks, 6);
|
||||
#if !(DEC_ROUND == NO_TABLES)
|
||||
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
||||
cx->ks[i] = inv_mcol(cx->ks[i]);
|
||||
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
cx->ks[v(56,(4))] = ff(ss[4] = word_in(key, 4));
|
||||
cx->ks[v(56,(5))] = ff(ss[5] = word_in(key, 5));
|
||||
cx->ks[v(56,(6))] = ff(ss[6] = word_in(key, 6));
|
||||
cx->ks[v(56,(7))] = ff(ss[7] = word_in(key, 7));
|
||||
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
||||
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
||||
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
||||
kdl8(cx->ks, 6);
|
||||
#endif
|
||||
cx->inf.l = 0;
|
||||
cx->inf.b[0] = 14 * 16;
|
||||
|
||||
#ifdef USE_VIA_ACE_IF_PRESENT
|
||||
if(VIA_ACE_AVAILABLE)
|
||||
cx->inf.b[1] = 0xff;
|
||||
#endif
|
||||
|
||||
#if defined( AES_ERR_CHK )
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(AES_VAR)
|
||||
|
||||
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
|
||||
{
|
||||
switch(key_len)
|
||||
{
|
||||
#if defined( AES_ERR_CHK )
|
||||
case 16: case 128: return aes_decrypt_key128(key, cx);
|
||||
case 24: case 192: return aes_decrypt_key192(key, cx);
|
||||
case 32: case 256: return aes_decrypt_key256(key, cx);
|
||||
default: return EXIT_FAILURE;
|
||||
#else
|
||||
case 16: case 128: aes_decrypt_key128(key, cx); return;
|
||||
case 24: case 192: aes_decrypt_key192(key, cx); return;
|
||||
case 32: case 256: aes_decrypt_key256(key, cx); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
734
src/Crypto/Aesopt.h
Normal file
734
src/Crypto/Aesopt.h
Normal file
@@ -0,0 +1,734 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the compilation options for AES (Rijndael) and code
|
||||
that is common across encryption, key scheduling and table generation.
|
||||
|
||||
OPERATION
|
||||
|
||||
These source code files implement the AES algorithm Rijndael designed by
|
||||
Joan Daemen and Vincent Rijmen. This version is designed for the standard
|
||||
block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
|
||||
and 32 bytes).
|
||||
|
||||
This version is designed for flexibility and speed using operations on
|
||||
32-bit words rather than operations on bytes. It can be compiled with
|
||||
either big or little endian internal byte order but is faster when the
|
||||
native byte order for the processor is used.
|
||||
|
||||
THE CIPHER INTERFACE
|
||||
|
||||
The cipher interface is implemented as an array of bytes in which lower
|
||||
AES bit sequence indexes map to higher numeric significance within bytes.
|
||||
|
||||
uint_8t (an unsigned 8-bit type)
|
||||
uint_32t (an unsigned 32-bit type)
|
||||
struct aes_encrypt_ctx (structure for the cipher encryption context)
|
||||
struct aes_decrypt_ctx (structure for the cipher decryption context)
|
||||
AES_RETURN the function return type
|
||||
|
||||
C subroutine calls:
|
||||
|
||||
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
|
||||
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_encrypt_ctx cx[1]);
|
||||
|
||||
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
|
||||
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const aes_decrypt_ctx cx[1]);
|
||||
|
||||
IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
|
||||
you call aes_init() before AES is used so that the tables are initialised.
|
||||
|
||||
C++ aes class subroutines:
|
||||
|
||||
Class AESencrypt for encryption
|
||||
|
||||
Construtors:
|
||||
AESencrypt(void)
|
||||
AESencrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
|
||||
|
||||
Class AESdecrypt for encryption
|
||||
Construtors:
|
||||
AESdecrypt(void)
|
||||
AESdecrypt(const unsigned char *key) - 128 bit key
|
||||
Members:
|
||||
AES_RETURN key128(const unsigned char *key)
|
||||
AES_RETURN key192(const unsigned char *key)
|
||||
AES_RETURN key256(const unsigned char *key)
|
||||
AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#if !defined( _AESOPT_H )
|
||||
#define _AESOPT_H
|
||||
|
||||
#ifdef TC_WINDOWS_BOOT
|
||||
#define ASM_X86_V2
|
||||
#endif
|
||||
|
||||
#if defined( __cplusplus )
|
||||
#include "Aescpp.h"
|
||||
#else
|
||||
#include "Aes.h"
|
||||
#endif
|
||||
|
||||
|
||||
#include "Common/Endian.h"
|
||||
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#endif
|
||||
|
||||
|
||||
/* CONFIGURATION - THE USE OF DEFINES
|
||||
|
||||
Later in this section there are a number of defines that control the
|
||||
operation of the code. In each section, the purpose of each define is
|
||||
explained so that the relevant form can be included or excluded by
|
||||
setting either 1's or 0's respectively on the branches of the related
|
||||
#if clauses. The following local defines should not be changed.
|
||||
*/
|
||||
|
||||
#define ENCRYPTION_IN_C 1
|
||||
#define DECRYPTION_IN_C 2
|
||||
#define ENC_KEYING_IN_C 4
|
||||
#define DEC_KEYING_IN_C 8
|
||||
|
||||
#define NO_TABLES 0
|
||||
#define ONE_TABLE 1
|
||||
#define FOUR_TABLES 4
|
||||
#define NONE 0
|
||||
#define PARTIAL 1
|
||||
#define FULL 2
|
||||
|
||||
/* --- START OF USER CONFIGURED OPTIONS --- */
|
||||
|
||||
/* 1. BYTE ORDER WITHIN 32 BIT WORDS
|
||||
|
||||
The fundamental data processing units in Rijndael are 8-bit bytes. The
|
||||
input, output and key input are all enumerated arrays of bytes in which
|
||||
bytes are numbered starting at zero and increasing to one less than the
|
||||
number of bytes in the array in question. This enumeration is only used
|
||||
for naming bytes and does not imply any adjacency or order relationship
|
||||
from one byte to another. When these inputs and outputs are considered
|
||||
as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
|
||||
byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
|
||||
In this implementation bits are numbered from 0 to 7 starting at the
|
||||
numerically least significant end of each byte (bit n represents 2^n).
|
||||
|
||||
However, Rijndael can be implemented more efficiently using 32-bit
|
||||
words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
|
||||
into word[n]. While in principle these bytes can be assembled into words
|
||||
in any positions, this implementation only supports the two formats in
|
||||
which bytes in adjacent positions within words also have adjacent byte
|
||||
numbers. This order is called big-endian if the lowest numbered bytes
|
||||
in words have the highest numeric significance and little-endian if the
|
||||
opposite applies.
|
||||
|
||||
This code can work in either order irrespective of the order used by the
|
||||
machine on which it runs. Normally the internal byte order will be set
|
||||
to the order of the processor on which the code is to be run but this
|
||||
define can be used to reverse this in special situations
|
||||
|
||||
WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
|
||||
This define will hence be redefined later (in section 4) if necessary
|
||||
*/
|
||||
|
||||
#if 1
|
||||
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#elif 0
|
||||
#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
|
||||
#elif 0
|
||||
#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
|
||||
#else
|
||||
#error The algorithm byte order is not defined
|
||||
#endif
|
||||
|
||||
/* 2. VIA ACE SUPPORT
|
||||
|
||||
Define this option if support for the VIA ACE is required. This uses
|
||||
inline assembler instructions and is only implemented for the Microsoft,
|
||||
Intel and GCC compilers. If VIA ACE is known to be present, then defining
|
||||
ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
|
||||
code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
|
||||
it is detected (both present and enabled) but the normal AES code will
|
||||
also be present.
|
||||
|
||||
When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
|
||||
aligned; other input/output buffers do not need to be 16 byte aligned
|
||||
but there are very large performance gains if this can be arranged.
|
||||
VIA ACE also requires the decryption key schedule to be in reverse
|
||||
order (which later checks below ensure).
|
||||
*/
|
||||
|
||||
#if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# define ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
|
||||
#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
|
||||
defined( _MSC_VER ) && ( _MSC_VER <= 800 )
|
||||
# if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# undef USE_VIA_ACE_IF_PRESENT
|
||||
# endif
|
||||
# if defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# undef ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* 3. ASSEMBLER SUPPORT
|
||||
|
||||
This define (which can be on the command line) enables the use of the
|
||||
assembler code routines for encryption, decryption and key scheduling
|
||||
as follows:
|
||||
|
||||
ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption, decryption and key scheduling
|
||||
ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
|
||||
encryption and decryption and but with key scheduling in C
|
||||
|
||||
Change one 'if 0' below to 'if 1' to select the version or define
|
||||
as a compilation option.
|
||||
*/
|
||||
|
||||
#if 0 && !defined( ASM_X86_V1C )
|
||||
# define ASM_X86_V1C
|
||||
#elif 0 && !defined( ASM_X86_V2 )
|
||||
# define ASM_X86_V2
|
||||
#elif 0 && !defined( ASM_X86_V2C )
|
||||
# define ASM_X86_V2C
|
||||
#elif 0 && !defined( ASM_AMD64_C )
|
||||
# define ASM_AMD64_C
|
||||
#endif
|
||||
|
||||
#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
|
||||
&& !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
|
||||
//# error Assembler code is only available for x86 and AMD64 systems
|
||||
#endif
|
||||
|
||||
/* 4. FAST INPUT/OUTPUT OPERATIONS.
|
||||
|
||||
On some machines it is possible to improve speed by transferring the
|
||||
bytes in the input and output arrays to and from the internal 32-bit
|
||||
variables by addressing these arrays as if they are arrays of 32-bit
|
||||
words. On some machines this will always be possible but there may
|
||||
be a large performance penalty if the byte arrays are not aligned on
|
||||
the normal word boundaries. On other machines this technique will
|
||||
lead to memory access errors when such 32-bit word accesses are not
|
||||
properly aligned. The option SAFE_IO avoids such problems but will
|
||||
often be slower on those machines that support misaligned access
|
||||
(especially so if care is taken to align the input and output byte
|
||||
arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
|
||||
assumed that access to byte arrays as if they are arrays of 32-bit
|
||||
words will not cause problems when such accesses are misaligned.
|
||||
*/
|
||||
#if 1 && !defined( _MSC_VER )
|
||||
#define SAFE_IO
|
||||
#endif
|
||||
|
||||
/* 5. LOOP UNROLLING
|
||||
|
||||
The code for encryption and decrytpion cycles through a number of rounds
|
||||
that can be implemented either in a loop or by expanding the code into a
|
||||
long sequence of instructions, the latter producing a larger program but
|
||||
one that will often be much faster. The latter is called loop unrolling.
|
||||
There are also potential speed advantages in expanding two iterations in
|
||||
a loop with half the number of iterations, which is called partial loop
|
||||
unrolling. The following options allow partial or full loop unrolling
|
||||
to be set independently for encryption and decryption
|
||||
*/
|
||||
#if 1
|
||||
#define ENC_UNROLL FULL
|
||||
#elif 0
|
||||
#define ENC_UNROLL PARTIAL
|
||||
#else
|
||||
#define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
#define DEC_UNROLL FULL
|
||||
#elif 0
|
||||
#define DEC_UNROLL PARTIAL
|
||||
#else
|
||||
#define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
/* 6. FAST FINITE FIELD OPERATIONS
|
||||
|
||||
If this section is included, tables are used to provide faster finite
|
||||
field arithmetic (this has no effect if FIXED_TABLES is defined).
|
||||
*/
|
||||
#if !defined (TC_WINDOWS_BOOT)
|
||||
#define FF_TABLES
|
||||
#endif
|
||||
|
||||
/* 7. INTERNAL STATE VARIABLE FORMAT
|
||||
|
||||
The internal state of Rijndael is stored in a number of local 32-bit
|
||||
word varaibles which can be defined either as an array or as individual
|
||||
names variables. Include this section if you want to store these local
|
||||
varaibles in arrays. Otherwise individual local variables will be used.
|
||||
*/
|
||||
#if 1
|
||||
#define ARRAYS
|
||||
#endif
|
||||
|
||||
/* 8. FIXED OR DYNAMIC TABLES
|
||||
|
||||
When this section is included the tables used by the code are compiled
|
||||
statically into the binary file. Otherwise the subroutine aes_init()
|
||||
must be called to compute them before the code is first used.
|
||||
*/
|
||||
#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
|
||||
#define FIXED_TABLES
|
||||
#endif
|
||||
|
||||
/* 9. TABLE ALIGNMENT
|
||||
|
||||
On some sytsems speed will be improved by aligning the AES large lookup
|
||||
tables on particular boundaries. This define should be set to a power of
|
||||
two giving the desired alignment. It can be left undefined if alignment
|
||||
is not needed. This option is specific to the Microsft VC++ compiler -
|
||||
it seems to sometimes cause trouble for the VC++ version 6 compiler.
|
||||
*/
|
||||
|
||||
#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
|
||||
#define TABLE_ALIGN 32
|
||||
#endif
|
||||
|
||||
/* 10. TABLE OPTIONS
|
||||
|
||||
This cipher proceeds by repeating in a number of cycles known as 'rounds'
|
||||
which are implemented by a round function which can optionally be speeded
|
||||
up using tables. The basic tables are each 256 32-bit words, with either
|
||||
one or four tables being required for each round function depending on
|
||||
how much speed is required. The encryption and decryption round functions
|
||||
are different and the last encryption and decrytpion round functions are
|
||||
different again making four different round functions in all.
|
||||
|
||||
This means that:
|
||||
1. Normal encryption and decryption rounds can each use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
2. The last encryption and decryption rounds can also use either 0, 1
|
||||
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
|
||||
|
||||
Include or exclude the appropriate definitions below to set the number
|
||||
of tables used by this implementation.
|
||||
*/
|
||||
|
||||
#if 1 /* set tables for the normal encryption round */
|
||||
#define ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last encryption round */
|
||||
#define LAST_ENC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define LAST_ENC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define LAST_ENC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the normal decryption round */
|
||||
#define DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
#if 1 /* set tables for the last decryption round */
|
||||
#define LAST_DEC_ROUND FOUR_TABLES
|
||||
#elif 0
|
||||
#define LAST_DEC_ROUND ONE_TABLE
|
||||
#else
|
||||
#define LAST_DEC_ROUND NO_TABLES
|
||||
#endif
|
||||
|
||||
/* The decryption key schedule can be speeded up with tables in the same
|
||||
way that the round functions can. Include or exclude the following
|
||||
defines to set this requirement.
|
||||
*/
|
||||
#if 1
|
||||
#define KEY_SCHED FOUR_TABLES
|
||||
#elif 0
|
||||
#define KEY_SCHED ONE_TABLE
|
||||
#else
|
||||
#define KEY_SCHED NO_TABLES
|
||||
#endif
|
||||
|
||||
/* ---- END OF USER CONFIGURED OPTIONS ---- */
|
||||
|
||||
/* VIA ACE support is only available for VC++ and GCC */
|
||||
|
||||
#if !defined( _MSC_VER ) && !defined( __GNUC__ )
|
||||
# if defined( ASSUME_VIA_ACE_PRESENT )
|
||||
# undef ASSUME_VIA_ACE_PRESENT
|
||||
# endif
|
||||
# if defined( USE_VIA_ACE_IF_PRESENT )
|
||||
# undef USE_VIA_ACE_IF_PRESENT
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
|
||||
#define USE_VIA_ACE_IF_PRESENT
|
||||
#endif
|
||||
|
||||
#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
|
||||
#define AES_REV_DKS
|
||||
#endif
|
||||
|
||||
/* Assembler support requires the use of platform byte order */
|
||||
|
||||
#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
|
||||
&& (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
|
||||
#undef ALGORITHM_BYTE_ORDER
|
||||
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
|
||||
#endif
|
||||
|
||||
/* In this implementation the columns of the state array are each held in
|
||||
32-bit words. The state array can be held in various ways: in an array
|
||||
of words, in a number of individual word variables or in a number of
|
||||
processor registers. The following define maps a variable name x and
|
||||
a column number c to the way the state array variable is to be held.
|
||||
The first define below maps the state into an array x[c] whereas the
|
||||
second form maps the state into a number of individual variables x0,
|
||||
x1, etc. Another form could map individual state colums to machine
|
||||
register names.
|
||||
*/
|
||||
|
||||
#if defined( ARRAYS )
|
||||
#define s(x,c) x[c]
|
||||
#else
|
||||
#define s(x,c) x##c
|
||||
#endif
|
||||
|
||||
/* This implementation provides subroutines for encryption, decryption
|
||||
and for setting the three key lengths (separately) for encryption
|
||||
and decryption. Since not all functions are needed, masks are set
|
||||
up here to determine which will be implemented in C
|
||||
*/
|
||||
|
||||
#if !defined( AES_ENCRYPT )
|
||||
# define EFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define EFUNCS_IN_C ENC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
|
||||
#else
|
||||
# define EFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#if !defined( AES_DECRYPT )
|
||||
# define DFUNCS_IN_C 0
|
||||
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|
||||
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
|
||||
# define DFUNCS_IN_C DEC_KEYING_IN_C
|
||||
#elif !defined( ASM_X86_V2 )
|
||||
# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
|
||||
#else
|
||||
# define DFUNCS_IN_C 0
|
||||
#endif
|
||||
|
||||
#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
|
||||
|
||||
/* END OF CONFIGURATION OPTIONS */
|
||||
|
||||
#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
|
||||
|
||||
/* Disable or report errors on some combinations of options */
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
|
||||
#undef LAST_ENC_ROUND
|
||||
#define LAST_ENC_ROUND NO_TABLES
|
||||
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
|
||||
#undef LAST_ENC_ROUND
|
||||
#define LAST_ENC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
|
||||
#undef ENC_UNROLL
|
||||
#define ENC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
|
||||
#undef LAST_DEC_ROUND
|
||||
#define LAST_DEC_ROUND NO_TABLES
|
||||
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
|
||||
#undef LAST_DEC_ROUND
|
||||
#define LAST_DEC_ROUND ONE_TABLE
|
||||
#endif
|
||||
|
||||
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
|
||||
#undef DEC_UNROLL
|
||||
#define DEC_UNROLL NONE
|
||||
#endif
|
||||
|
||||
#if defined( bswap32 )
|
||||
#define aes_sw32 bswap32
|
||||
#elif defined( bswap_32 )
|
||||
#define aes_sw32 bswap_32
|
||||
#else
|
||||
#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
|
||||
#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
|
||||
higher index positions with wrap around into low positions
|
||||
ups(x,n): moves bytes by n positions to higher index positions in
|
||||
words but without wrap around
|
||||
bval(x,n): extracts a byte from a word
|
||||
|
||||
WARNING: The definitions given here are intended only for use with
|
||||
unsigned variables and with shift counts that are compile
|
||||
time constants
|
||||
*/
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
|
||||
#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
|
||||
#define ups(x,n) ((uint_32t) (x) << (8 * (n)))
|
||||
#define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
|
||||
#define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
|
||||
#endif
|
||||
|
||||
#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
|
||||
#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
|
||||
#define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
|
||||
#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
|
||||
#define bytes2word(b0, b1, b2, b3) \
|
||||
(((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
|
||||
#endif
|
||||
|
||||
#if defined( SAFE_IO )
|
||||
|
||||
#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
|
||||
((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
|
||||
#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
|
||||
((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
|
||||
|
||||
#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
|
||||
|
||||
#define word_in(x,c) (*((uint_32t*)(x)+(c)))
|
||||
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
|
||||
|
||||
#else
|
||||
|
||||
#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
|
||||
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
|
||||
|
||||
#endif
|
||||
|
||||
/* the finite field modular polynomial and elements */
|
||||
|
||||
#define WPOLY 0x011b
|
||||
#define BPOLY 0x1b
|
||||
|
||||
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
|
||||
|
||||
#define m1 0x80808080
|
||||
#define m2 0x7f7f7f7f
|
||||
#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
|
||||
|
||||
/* The following defines provide alternative definitions of gf_mulx that might
|
||||
give improved performance if a fast 32-bit multiply is not available. Note
|
||||
that a temporary variable u needs to be defined where gf_mulx is used.
|
||||
|
||||
#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
|
||||
#define m4 (0x01010101 * BPOLY)
|
||||
#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
|
||||
*/
|
||||
|
||||
/* Work out which tables are needed for the different options */
|
||||
|
||||
#if defined( ASM_X86_V1C )
|
||||
#if defined( ENC_ROUND )
|
||||
#undef ENC_ROUND
|
||||
#endif
|
||||
#define ENC_ROUND FOUR_TABLES
|
||||
#if defined( LAST_ENC_ROUND )
|
||||
#undef LAST_ENC_ROUND
|
||||
#endif
|
||||
#define LAST_ENC_ROUND FOUR_TABLES
|
||||
#if defined( DEC_ROUND )
|
||||
#undef DEC_ROUND
|
||||
#endif
|
||||
#define DEC_ROUND FOUR_TABLES
|
||||
#if defined( LAST_DEC_ROUND )
|
||||
#undef LAST_DEC_ROUND
|
||||
#endif
|
||||
#define LAST_DEC_ROUND FOUR_TABLES
|
||||
#if defined( KEY_SCHED )
|
||||
#undef KEY_SCHED
|
||||
#define KEY_SCHED FOUR_TABLES
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
#if ENC_ROUND == ONE_TABLE
|
||||
#define FT1_SET
|
||||
#elif ENC_ROUND == FOUR_TABLES
|
||||
#define FT4_SET
|
||||
#else
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#if LAST_ENC_ROUND == ONE_TABLE
|
||||
#define FL1_SET
|
||||
#elif LAST_ENC_ROUND == FOUR_TABLES
|
||||
#define FL4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
|
||||
#if DEC_ROUND == ONE_TABLE
|
||||
#define IT1_SET
|
||||
#elif DEC_ROUND == FOUR_TABLES
|
||||
#define IT4_SET
|
||||
#else
|
||||
#define ISB_SET
|
||||
#endif
|
||||
#if LAST_DEC_ROUND == ONE_TABLE
|
||||
#define IL1_SET
|
||||
#elif LAST_DEC_ROUND == FOUR_TABLES
|
||||
#define IL4_SET
|
||||
#elif !defined(ISB_SET)
|
||||
#define ISB_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
#if KEY_SCHED == ONE_TABLE
|
||||
#define LS1_SET
|
||||
#elif KEY_SCHED == FOUR_TABLES
|
||||
#define LS4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
||||
#if KEY_SCHED == ONE_TABLE
|
||||
#define IM1_SET
|
||||
#elif KEY_SCHED == FOUR_TABLES
|
||||
#define IM4_SET
|
||||
#elif !defined( SBX_SET )
|
||||
#define SBX_SET
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* generic definitions of Rijndael macros that use tables */
|
||||
|
||||
#define no_table(x,box,vf,rf,c) bytes2word( \
|
||||
box[bval(vf(x,0,c),rf(0,c))], \
|
||||
box[bval(vf(x,1,c),rf(1,c))], \
|
||||
box[bval(vf(x,2,c),rf(2,c))], \
|
||||
box[bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define one_table(x,op,tab,vf,rf,c) \
|
||||
( tab[bval(vf(x,0,c),rf(0,c))] \
|
||||
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
|
||||
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
|
||||
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
|
||||
|
||||
#define four_tables(x,tab,vf,rf,c) \
|
||||
( tab[0][bval(vf(x,0,c),rf(0,c))] \
|
||||
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
|
||||
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
|
||||
^ tab[3][bval(vf(x,3,c),rf(3,c))])
|
||||
|
||||
#define vf1(x,r,c) (x)
|
||||
#define rf1(r,c) (r)
|
||||
#define rf2(r,c) ((8+r-c)&3)
|
||||
|
||||
/* perform forward and inverse column mix operation on four bytes in long word x in */
|
||||
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
|
||||
|
||||
#if defined( FM4_SET ) /* not currently used */
|
||||
#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
|
||||
#elif defined( FM1_SET ) /* not currently used */
|
||||
#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
|
||||
#else
|
||||
#define dec_fmvars uint_32t g2
|
||||
#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
|
||||
#endif
|
||||
|
||||
#if defined( IM4_SET )
|
||||
#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
|
||||
#elif defined( IM1_SET )
|
||||
#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
|
||||
#else
|
||||
#define dec_imvars uint_32t g2, g4, g9
|
||||
#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
|
||||
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
|
||||
#endif
|
||||
|
||||
#if defined( FL4_SET )
|
||||
#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS4_SET )
|
||||
#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
|
||||
#elif defined( FL1_SET )
|
||||
#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
|
||||
#elif defined( LS1_SET )
|
||||
#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
|
||||
#else
|
||||
#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
|
||||
#endif
|
||||
|
||||
#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
|
||||
#define ISB_SET
|
||||
#endif
|
||||
|
||||
#endif
|
||||
428
src/Crypto/Aestab.c
Normal file
428
src/Crypto/Aestab.c
Normal file
@@ -0,0 +1,428 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt:
|
||||
- Added run-time table generator for Aes_x86_v2.asm
|
||||
*/
|
||||
|
||||
#define DO_TABLES
|
||||
|
||||
#include "Aes.h"
|
||||
#include "Aesopt.h"
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
#define sb_data(w) {\
|
||||
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
|
||||
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
|
||||
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
|
||||
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
|
||||
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
|
||||
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
|
||||
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
|
||||
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
|
||||
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
|
||||
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
|
||||
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
|
||||
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
|
||||
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
|
||||
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
|
||||
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
|
||||
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
|
||||
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
|
||||
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
|
||||
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
|
||||
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
|
||||
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
|
||||
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
|
||||
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
|
||||
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
|
||||
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
|
||||
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
|
||||
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
|
||||
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
|
||||
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
|
||||
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
|
||||
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
|
||||
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
|
||||
|
||||
#define isb_data(w) {\
|
||||
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
|
||||
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
|
||||
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
|
||||
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
|
||||
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
|
||||
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
|
||||
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
|
||||
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
|
||||
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
|
||||
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
|
||||
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
|
||||
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
|
||||
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
|
||||
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
|
||||
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
|
||||
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
|
||||
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
|
||||
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
|
||||
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
|
||||
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
|
||||
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
|
||||
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
|
||||
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
|
||||
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
|
||||
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
|
||||
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
|
||||
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
|
||||
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
|
||||
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
|
||||
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
|
||||
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
|
||||
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
|
||||
|
||||
#define mm_data(w) {\
|
||||
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
|
||||
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
|
||||
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
|
||||
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
|
||||
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
|
||||
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
|
||||
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
|
||||
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
|
||||
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
|
||||
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
|
||||
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
|
||||
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
|
||||
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
|
||||
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
|
||||
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
|
||||
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
|
||||
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
|
||||
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
|
||||
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
|
||||
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
|
||||
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
|
||||
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
|
||||
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
|
||||
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
|
||||
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
|
||||
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
|
||||
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
|
||||
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
|
||||
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
|
||||
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
|
||||
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
|
||||
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
|
||||
|
||||
#define rc_data(w) {\
|
||||
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
|
||||
w(0x1b), w(0x36) }
|
||||
|
||||
#define h0(x) (x)
|
||||
|
||||
#define w0(p) bytes2word(p, 0, 0, 0)
|
||||
#define w1(p) bytes2word(0, p, 0, 0)
|
||||
#define w2(p) bytes2word(0, 0, p, 0)
|
||||
#define w3(p) bytes2word(0, 0, 0, p)
|
||||
|
||||
#define u0(p) bytes2word(f2(p), p, p, f3(p))
|
||||
#define u1(p) bytes2word(f3(p), f2(p), p, p)
|
||||
#define u2(p) bytes2word(p, f3(p), f2(p), p)
|
||||
#define u3(p) bytes2word(p, p, f3(p), f2(p))
|
||||
|
||||
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
|
||||
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
|
||||
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
|
||||
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES) || !defined(FF_TABLES)
|
||||
|
||||
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
|
||||
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
|
||||
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
|
||||
^ (((x>>5) & 4) * WPOLY))
|
||||
#define f3(x) (f2(x) ^ x)
|
||||
#define f9(x) (f8(x) ^ x)
|
||||
#define fb(x) (f8(x) ^ f2(x) ^ x)
|
||||
#define fd(x) (f8(x) ^ f4(x) ^ x)
|
||||
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
|
||||
|
||||
#else
|
||||
|
||||
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
|
||||
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
|
||||
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
|
||||
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
|
||||
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
|
||||
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
|
||||
#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
|
||||
|
||||
#endif
|
||||
|
||||
#include "Aestab.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
|
||||
/* implemented in case of wrong call for fixed tables */
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#else /* dynamic table generation */
|
||||
|
||||
#if !defined(FF_TABLES)
|
||||
|
||||
/* Generate the tables for the dynamic table option
|
||||
|
||||
It will generally be sensible to use tables to compute finite
|
||||
field multiplies and inverses but where memory is scarse this
|
||||
code might sometimes be better. But it only has effect during
|
||||
initialisation so its pretty unimportant in overall terms.
|
||||
*/
|
||||
|
||||
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
|
||||
set in x with x in the range 1 < x < 0x00000200. This form is
|
||||
used so that locals within fi can be bytes rather than words
|
||||
*/
|
||||
|
||||
static uint_8t hibit(const uint_32t x)
|
||||
{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
|
||||
|
||||
r |= (r >> 2);
|
||||
r |= (r >> 4);
|
||||
return (r + 1) >> 1;
|
||||
}
|
||||
|
||||
/* return the inverse of the finite field element x */
|
||||
|
||||
static uint_8t fi(const uint_8t x)
|
||||
{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
|
||||
|
||||
if(x < 2) return x;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
if(!n1) return v1;
|
||||
|
||||
while(n2 >= n1)
|
||||
{
|
||||
n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
|
||||
}
|
||||
|
||||
if(!n2) return v2;
|
||||
|
||||
while(n1 >= n2)
|
||||
{
|
||||
n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* The forward and inverse affine transformations used in the S-box */
|
||||
|
||||
#define fwd_affine(x) \
|
||||
(w = (uint_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint_8t)(w^(w>>8)))
|
||||
|
||||
#define inv_affine(x) \
|
||||
(w = (uint_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint_8t)(w^(w>>8)))
|
||||
|
||||
static int init = 0;
|
||||
|
||||
#ifdef TC_WINDOWS_BOOT
|
||||
|
||||
#pragma optimize ("l", on)
|
||||
uint_8t aes_enc_tab[256][8];
|
||||
uint_8t aes_dec_tab[256][8];
|
||||
|
||||
#endif
|
||||
|
||||
AES_RETURN aes_init(void)
|
||||
{ uint_32t i, w;
|
||||
|
||||
#ifdef TC_WINDOWS_BOOT
|
||||
|
||||
if (init)
|
||||
return EXIT_SUCCESS;
|
||||
|
||||
for (i = 0; i < 256; ++i)
|
||||
{
|
||||
uint_8t x = fwd_affine(fi((uint_8t)i));
|
||||
aes_enc_tab[i][0] = 0;
|
||||
aes_enc_tab[i][1] = x;
|
||||
aes_enc_tab[i][2] = x;
|
||||
aes_enc_tab[i][3] = f3(x);
|
||||
aes_enc_tab[i][4] = f2(x);
|
||||
aes_enc_tab[i][5] = x;
|
||||
aes_enc_tab[i][6] = x;
|
||||
aes_enc_tab[i][7] = f3(x);
|
||||
|
||||
x = fi((uint_8t)inv_affine((uint_8t)i));
|
||||
aes_dec_tab[i][0] = fe(x);
|
||||
aes_dec_tab[i][1] = f9(x);
|
||||
aes_dec_tab[i][2] = fd(x);
|
||||
aes_dec_tab[i][3] = fb(x);
|
||||
aes_dec_tab[i][4] = fe(x);
|
||||
aes_dec_tab[i][5] = f9(x);
|
||||
aes_dec_tab[i][6] = fd(x);
|
||||
aes_dec_tab[i][7] = x;
|
||||
}
|
||||
|
||||
#else // TC_WINDOWS_BOOT
|
||||
|
||||
#if defined(FF_TABLES)
|
||||
|
||||
uint_8t pow[512], log[256];
|
||||
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
/* log and power tables for GF(2^8) finite field with
|
||||
WPOLY as modular polynomial - the simplest primitive
|
||||
root is 0x03, used here to generate the tables
|
||||
*/
|
||||
|
||||
i = 0; w = 1;
|
||||
do
|
||||
{
|
||||
pow[i] = (uint_8t)w;
|
||||
pow[i + 255] = (uint_8t)w;
|
||||
log[w] = (uint_8t)i++;
|
||||
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
|
||||
}
|
||||
while (w != 1);
|
||||
|
||||
#else
|
||||
if(init)
|
||||
return EXIT_SUCCESS;
|
||||
#endif
|
||||
|
||||
for(i = 0, w = 1; i < RC_LENGTH; ++i)
|
||||
{
|
||||
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
|
||||
w = f2(w);
|
||||
}
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{ uint_8t b;
|
||||
|
||||
b = fwd_affine(fi((uint_8t)i));
|
||||
w = bytes2word(f2(b), b, b, f3(b));
|
||||
|
||||
#if defined( SBX_SET )
|
||||
t_set(s,box)[i] = b;
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET ) /* tables for a normal encryption round */
|
||||
t_set(f,n)[i] = w;
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
t_set(f,n)[0][i] = w;
|
||||
t_set(f,n)[1][i] = upr(w,1);
|
||||
t_set(f,n)[2][i] = upr(w,2);
|
||||
t_set(f,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
|
||||
#if defined( FL1_SET ) /* tables for last encryption round (may also */
|
||||
t_set(f,l)[i] = w; /* be used in the key schedule) */
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
t_set(f,l)[0][i] = w;
|
||||
t_set(f,l)[1][i] = upr(w,1);
|
||||
t_set(f,l)[2][i] = upr(w,2);
|
||||
t_set(f,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/
|
||||
t_set(l,s)[i] = w; /* not of the required form */
|
||||
#endif
|
||||
#if defined( LS4_SET )
|
||||
t_set(l,s)[0][i] = w;
|
||||
t_set(l,s)[1][i] = upr(w,1);
|
||||
t_set(l,s)[2][i] = upr(w,2);
|
||||
t_set(l,s)[3][i] = upr(w,3);
|
||||
#endif
|
||||
|
||||
b = fi(inv_affine((uint_8t)i));
|
||||
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
|
||||
|
||||
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
|
||||
t_set(i,m)[b] = w;
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
t_set(i,m)[0][b] = w;
|
||||
t_set(i,m)[1][b] = upr(w,1);
|
||||
t_set(i,m)[2][b] = upr(w,2);
|
||||
t_set(i,m)[3][b] = upr(w,3);
|
||||
#endif
|
||||
|
||||
#if defined( ISB_SET )
|
||||
t_set(i,box)[i] = b;
|
||||
#endif
|
||||
#if defined( IT1_SET ) /* tables for a normal decryption round */
|
||||
t_set(i,n)[i] = w;
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
t_set(i,n)[0][i] = w;
|
||||
t_set(i,n)[1][i] = upr(w,1);
|
||||
t_set(i,n)[2][i] = upr(w,2);
|
||||
t_set(i,n)[3][i] = upr(w,3);
|
||||
#endif
|
||||
w = bytes2word(b, 0, 0, 0);
|
||||
#if defined( IL1_SET ) /* tables for last decryption round */
|
||||
t_set(i,l)[i] = w;
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
t_set(i,l)[0][i] = w;
|
||||
t_set(i,l)[1][i] = upr(w,1);
|
||||
t_set(i,l)[2][i] = upr(w,2);
|
||||
t_set(i,l)[3][i] = upr(w,3);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // TC_WINDOWS_BOOT
|
||||
|
||||
init = 1;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
174
src/Crypto/Aestab.h
Normal file
174
src/Crypto/Aestab.h
Normal file
@@ -0,0 +1,174 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 20/12/2007
|
||||
|
||||
This file contains the code for declaring the tables needed to implement
|
||||
AES. The file aesopt.h is assumed to be included before this header file.
|
||||
If there are no global variables, the definitions here can be used to put
|
||||
the AES tables in a structure so that a pointer can then be added to the
|
||||
AES context to pass them to the AES routines that need them. If this
|
||||
facility is used, the calling program has to ensure that this pointer is
|
||||
managed appropriately. In particular, the value of the t_dec(in,it) item
|
||||
in the table structure must be set to zero in order to ensure that the
|
||||
tables are initialised. In practice the three code sequences in aeskey.c
|
||||
that control the calls to aes_init() and the aes_init() routine itself will
|
||||
have to be changed for a specific implementation. If global variables are
|
||||
available it will generally be preferable to use them with the precomputed
|
||||
FIXED_TABLES option that uses static global tables.
|
||||
|
||||
The following defines can be used to control the way the tables
|
||||
are defined, initialised and used in embedded environments that
|
||||
require special features for these purposes
|
||||
|
||||
the 't_dec' construction is used to declare fixed table arrays
|
||||
the 't_set' construction is used to set fixed table values
|
||||
the 't_use' construction is used to access fixed table values
|
||||
|
||||
256 byte tables:
|
||||
|
||||
t_xxx(s,box) => forward S box
|
||||
t_xxx(i,box) => inverse S box
|
||||
|
||||
256 32-bit word OR 4 x 256 32-bit word tables:
|
||||
|
||||
t_xxx(f,n) => forward normal round
|
||||
t_xxx(f,l) => forward last round
|
||||
t_xxx(i,n) => inverse normal round
|
||||
t_xxx(i,l) => inverse last round
|
||||
t_xxx(l,s) => key schedule table
|
||||
t_xxx(i,m) => key schedule table
|
||||
|
||||
Other variables and tables:
|
||||
|
||||
t_xxx(r,c) => the rcon table
|
||||
*/
|
||||
|
||||
#if !defined( _AESTAB_H )
|
||||
#define _AESTAB_H
|
||||
|
||||
#define t_dec(m,n) t_##m##n
|
||||
#define t_set(m,n) t_##m##n
|
||||
#define t_use(m,n) t_##m##n
|
||||
|
||||
#if defined(FIXED_TABLES)
|
||||
# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ ))
|
||||
/* make tables far data to avoid using too much DGROUP space (PG) */
|
||||
# define CONST const far
|
||||
# else
|
||||
# define CONST const
|
||||
# endif
|
||||
#else
|
||||
# define CONST
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
# define EXTERN extern "C"
|
||||
#elif defined(DO_TABLES)
|
||||
# define EXTERN
|
||||
#else
|
||||
# define EXTERN extern
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && defined(TABLE_ALIGN)
|
||||
#define ALIGN __declspec(align(TABLE_ALIGN))
|
||||
#else
|
||||
#define ALIGN
|
||||
#endif
|
||||
|
||||
#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 )
|
||||
# define XP_DIR __cdecl
|
||||
#else
|
||||
# define XP_DIR
|
||||
#endif
|
||||
|
||||
#if defined(DO_TABLES) && defined(FIXED_TABLES)
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e)
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
|
||||
#else
|
||||
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
|
||||
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
|
||||
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH];
|
||||
#endif
|
||||
|
||||
#if defined( SBX_SET )
|
||||
d_1(uint_8t, t_dec(s,box), sb_data, h0);
|
||||
#endif
|
||||
#if defined( ISB_SET )
|
||||
d_1(uint_8t, t_dec(i,box), isb_data, h0);
|
||||
#endif
|
||||
|
||||
#if defined( FT1_SET )
|
||||
d_1(uint_32t, t_dec(f,n), sb_data, u0);
|
||||
#endif
|
||||
#if defined( FT4_SET )
|
||||
d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3);
|
||||
#endif
|
||||
|
||||
#if defined( FL1_SET )
|
||||
d_1(uint_32t, t_dec(f,l), sb_data, w0);
|
||||
#endif
|
||||
#if defined( FL4_SET )
|
||||
d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( IT1_SET )
|
||||
d_1(uint_32t, t_dec(i,n), isb_data, v0);
|
||||
#endif
|
||||
#if defined( IT4_SET )
|
||||
d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#if defined( IL1_SET )
|
||||
d_1(uint_32t, t_dec(i,l), isb_data, w0);
|
||||
#endif
|
||||
#if defined( IL4_SET )
|
||||
d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
|
||||
#if defined( LS1_SET )
|
||||
#if defined( FL1_SET )
|
||||
#undef LS1_SET
|
||||
#else
|
||||
d_1(uint_32t, t_dec(l,s), sb_data, w0);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( LS4_SET )
|
||||
#if defined( FL4_SET )
|
||||
#undef LS4_SET
|
||||
#else
|
||||
d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined( IM1_SET )
|
||||
d_1(uint_32t, t_dec(i,m), mm_data, v0);
|
||||
#endif
|
||||
#if defined( IM4_SET )
|
||||
d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
382
src/Crypto/Blowfish.c
Normal file
382
src/Crypto/Blowfish.c
Normal file
@@ -0,0 +1,382 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
// blowfish.cpp - written and placed in the public domain by Wei Dai
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#include <memory.h>
|
||||
#include "Common/Tcdefs.h"
|
||||
#include "Common/Endian.h"
|
||||
#include "Blowfish.h"
|
||||
|
||||
#define word32 unsigned __int32
|
||||
#define byte unsigned __int8
|
||||
#define GETBYTE(x, y) (unsigned int)(byte)((x)>>(8*(y)))
|
||||
#define ROUNDS 16
|
||||
|
||||
static const unsigned __int32 p_init[16+2] =
|
||||
{
|
||||
608135816U, 2242054355U, 320440878U, 57701188U,
|
||||
2752067618U, 698298832U, 137296536U, 3964562569U,
|
||||
1160258022U, 953160567U, 3193202383U, 887688300U,
|
||||
3232508343U, 3380367581U, 1065670069U, 3041331479U,
|
||||
2450970073U, 2306472731U
|
||||
} ;
|
||||
|
||||
static const unsigned __int32 s_init[4*256] = {
|
||||
3509652390U, 2564797868U, 805139163U, 3491422135U,
|
||||
3101798381U, 1780907670U, 3128725573U, 4046225305U,
|
||||
614570311U, 3012652279U, 134345442U, 2240740374U,
|
||||
1667834072U, 1901547113U, 2757295779U, 4103290238U,
|
||||
227898511U, 1921955416U, 1904987480U, 2182433518U,
|
||||
2069144605U, 3260701109U, 2620446009U, 720527379U,
|
||||
3318853667U, 677414384U, 3393288472U, 3101374703U,
|
||||
2390351024U, 1614419982U, 1822297739U, 2954791486U,
|
||||
3608508353U, 3174124327U, 2024746970U, 1432378464U,
|
||||
3864339955U, 2857741204U, 1464375394U, 1676153920U,
|
||||
1439316330U, 715854006U, 3033291828U, 289532110U,
|
||||
2706671279U, 2087905683U, 3018724369U, 1668267050U,
|
||||
732546397U, 1947742710U, 3462151702U, 2609353502U,
|
||||
2950085171U, 1814351708U, 2050118529U, 680887927U,
|
||||
999245976U, 1800124847U, 3300911131U, 1713906067U,
|
||||
1641548236U, 4213287313U, 1216130144U, 1575780402U,
|
||||
4018429277U, 3917837745U, 3693486850U, 3949271944U,
|
||||
596196993U, 3549867205U, 258830323U, 2213823033U,
|
||||
772490370U, 2760122372U, 1774776394U, 2652871518U,
|
||||
566650946U, 4142492826U, 1728879713U, 2882767088U,
|
||||
1783734482U, 3629395816U, 2517608232U, 2874225571U,
|
||||
1861159788U, 326777828U, 3124490320U, 2130389656U,
|
||||
2716951837U, 967770486U, 1724537150U, 2185432712U,
|
||||
2364442137U, 1164943284U, 2105845187U, 998989502U,
|
||||
3765401048U, 2244026483U, 1075463327U, 1455516326U,
|
||||
1322494562U, 910128902U, 469688178U, 1117454909U,
|
||||
936433444U, 3490320968U, 3675253459U, 1240580251U,
|
||||
122909385U, 2157517691U, 634681816U, 4142456567U,
|
||||
3825094682U, 3061402683U, 2540495037U, 79693498U,
|
||||
3249098678U, 1084186820U, 1583128258U, 426386531U,
|
||||
1761308591U, 1047286709U, 322548459U, 995290223U,
|
||||
1845252383U, 2603652396U, 3431023940U, 2942221577U,
|
||||
3202600964U, 3727903485U, 1712269319U, 422464435U,
|
||||
3234572375U, 1170764815U, 3523960633U, 3117677531U,
|
||||
1434042557U, 442511882U, 3600875718U, 1076654713U,
|
||||
1738483198U, 4213154764U, 2393238008U, 3677496056U,
|
||||
1014306527U, 4251020053U, 793779912U, 2902807211U,
|
||||
842905082U, 4246964064U, 1395751752U, 1040244610U,
|
||||
2656851899U, 3396308128U, 445077038U, 3742853595U,
|
||||
3577915638U, 679411651U, 2892444358U, 2354009459U,
|
||||
1767581616U, 3150600392U, 3791627101U, 3102740896U,
|
||||
284835224U, 4246832056U, 1258075500U, 768725851U,
|
||||
2589189241U, 3069724005U, 3532540348U, 1274779536U,
|
||||
3789419226U, 2764799539U, 1660621633U, 3471099624U,
|
||||
4011903706U, 913787905U, 3497959166U, 737222580U,
|
||||
2514213453U, 2928710040U, 3937242737U, 1804850592U,
|
||||
3499020752U, 2949064160U, 2386320175U, 2390070455U,
|
||||
2415321851U, 4061277028U, 2290661394U, 2416832540U,
|
||||
1336762016U, 1754252060U, 3520065937U, 3014181293U,
|
||||
791618072U, 3188594551U, 3933548030U, 2332172193U,
|
||||
3852520463U, 3043980520U, 413987798U, 3465142937U,
|
||||
3030929376U, 4245938359U, 2093235073U, 3534596313U,
|
||||
375366246U, 2157278981U, 2479649556U, 555357303U,
|
||||
3870105701U, 2008414854U, 3344188149U, 4221384143U,
|
||||
3956125452U, 2067696032U, 3594591187U, 2921233993U,
|
||||
2428461U, 544322398U, 577241275U, 1471733935U,
|
||||
610547355U, 4027169054U, 1432588573U, 1507829418U,
|
||||
2025931657U, 3646575487U, 545086370U, 48609733U,
|
||||
2200306550U, 1653985193U, 298326376U, 1316178497U,
|
||||
3007786442U, 2064951626U, 458293330U, 2589141269U,
|
||||
3591329599U, 3164325604U, 727753846U, 2179363840U,
|
||||
146436021U, 1461446943U, 4069977195U, 705550613U,
|
||||
3059967265U, 3887724982U, 4281599278U, 3313849956U,
|
||||
1404054877U, 2845806497U, 146425753U, 1854211946U,
|
||||
|
||||
1266315497U, 3048417604U, 3681880366U, 3289982499U,
|
||||
2909710000U, 1235738493U, 2632868024U, 2414719590U,
|
||||
3970600049U, 1771706367U, 1449415276U, 3266420449U,
|
||||
422970021U, 1963543593U, 2690192192U, 3826793022U,
|
||||
1062508698U, 1531092325U, 1804592342U, 2583117782U,
|
||||
2714934279U, 4024971509U, 1294809318U, 4028980673U,
|
||||
1289560198U, 2221992742U, 1669523910U, 35572830U,
|
||||
157838143U, 1052438473U, 1016535060U, 1802137761U,
|
||||
1753167236U, 1386275462U, 3080475397U, 2857371447U,
|
||||
1040679964U, 2145300060U, 2390574316U, 1461121720U,
|
||||
2956646967U, 4031777805U, 4028374788U, 33600511U,
|
||||
2920084762U, 1018524850U, 629373528U, 3691585981U,
|
||||
3515945977U, 2091462646U, 2486323059U, 586499841U,
|
||||
988145025U, 935516892U, 3367335476U, 2599673255U,
|
||||
2839830854U, 265290510U, 3972581182U, 2759138881U,
|
||||
3795373465U, 1005194799U, 847297441U, 406762289U,
|
||||
1314163512U, 1332590856U, 1866599683U, 4127851711U,
|
||||
750260880U, 613907577U, 1450815602U, 3165620655U,
|
||||
3734664991U, 3650291728U, 3012275730U, 3704569646U,
|
||||
1427272223U, 778793252U, 1343938022U, 2676280711U,
|
||||
2052605720U, 1946737175U, 3164576444U, 3914038668U,
|
||||
3967478842U, 3682934266U, 1661551462U, 3294938066U,
|
||||
4011595847U, 840292616U, 3712170807U, 616741398U,
|
||||
312560963U, 711312465U, 1351876610U, 322626781U,
|
||||
1910503582U, 271666773U, 2175563734U, 1594956187U,
|
||||
70604529U, 3617834859U, 1007753275U, 1495573769U,
|
||||
4069517037U, 2549218298U, 2663038764U, 504708206U,
|
||||
2263041392U, 3941167025U, 2249088522U, 1514023603U,
|
||||
1998579484U, 1312622330U, 694541497U, 2582060303U,
|
||||
2151582166U, 1382467621U, 776784248U, 2618340202U,
|
||||
3323268794U, 2497899128U, 2784771155U, 503983604U,
|
||||
4076293799U, 907881277U, 423175695U, 432175456U,
|
||||
1378068232U, 4145222326U, 3954048622U, 3938656102U,
|
||||
3820766613U, 2793130115U, 2977904593U, 26017576U,
|
||||
3274890735U, 3194772133U, 1700274565U, 1756076034U,
|
||||
4006520079U, 3677328699U, 720338349U, 1533947780U,
|
||||
354530856U, 688349552U, 3973924725U, 1637815568U,
|
||||
332179504U, 3949051286U, 53804574U, 2852348879U,
|
||||
3044236432U, 1282449977U, 3583942155U, 3416972820U,
|
||||
4006381244U, 1617046695U, 2628476075U, 3002303598U,
|
||||
1686838959U, 431878346U, 2686675385U, 1700445008U,
|
||||
1080580658U, 1009431731U, 832498133U, 3223435511U,
|
||||
2605976345U, 2271191193U, 2516031870U, 1648197032U,
|
||||
4164389018U, 2548247927U, 300782431U, 375919233U,
|
||||
238389289U, 3353747414U, 2531188641U, 2019080857U,
|
||||
1475708069U, 455242339U, 2609103871U, 448939670U,
|
||||
3451063019U, 1395535956U, 2413381860U, 1841049896U,
|
||||
1491858159U, 885456874U, 4264095073U, 4001119347U,
|
||||
1565136089U, 3898914787U, 1108368660U, 540939232U,
|
||||
1173283510U, 2745871338U, 3681308437U, 4207628240U,
|
||||
3343053890U, 4016749493U, 1699691293U, 1103962373U,
|
||||
3625875870U, 2256883143U, 3830138730U, 1031889488U,
|
||||
3479347698U, 1535977030U, 4236805024U, 3251091107U,
|
||||
2132092099U, 1774941330U, 1199868427U, 1452454533U,
|
||||
157007616U, 2904115357U, 342012276U, 595725824U,
|
||||
1480756522U, 206960106U, 497939518U, 591360097U,
|
||||
863170706U, 2375253569U, 3596610801U, 1814182875U,
|
||||
2094937945U, 3421402208U, 1082520231U, 3463918190U,
|
||||
2785509508U, 435703966U, 3908032597U, 1641649973U,
|
||||
2842273706U, 3305899714U, 1510255612U, 2148256476U,
|
||||
2655287854U, 3276092548U, 4258621189U, 236887753U,
|
||||
3681803219U, 274041037U, 1734335097U, 3815195456U,
|
||||
3317970021U, 1899903192U, 1026095262U, 4050517792U,
|
||||
356393447U, 2410691914U, 3873677099U, 3682840055U,
|
||||
|
||||
3913112168U, 2491498743U, 4132185628U, 2489919796U,
|
||||
1091903735U, 1979897079U, 3170134830U, 3567386728U,
|
||||
3557303409U, 857797738U, 1136121015U, 1342202287U,
|
||||
507115054U, 2535736646U, 337727348U, 3213592640U,
|
||||
1301675037U, 2528481711U, 1895095763U, 1721773893U,
|
||||
3216771564U, 62756741U, 2142006736U, 835421444U,
|
||||
2531993523U, 1442658625U, 3659876326U, 2882144922U,
|
||||
676362277U, 1392781812U, 170690266U, 3921047035U,
|
||||
1759253602U, 3611846912U, 1745797284U, 664899054U,
|
||||
1329594018U, 3901205900U, 3045908486U, 2062866102U,
|
||||
2865634940U, 3543621612U, 3464012697U, 1080764994U,
|
||||
553557557U, 3656615353U, 3996768171U, 991055499U,
|
||||
499776247U, 1265440854U, 648242737U, 3940784050U,
|
||||
980351604U, 3713745714U, 1749149687U, 3396870395U,
|
||||
4211799374U, 3640570775U, 1161844396U, 3125318951U,
|
||||
1431517754U, 545492359U, 4268468663U, 3499529547U,
|
||||
1437099964U, 2702547544U, 3433638243U, 2581715763U,
|
||||
2787789398U, 1060185593U, 1593081372U, 2418618748U,
|
||||
4260947970U, 69676912U, 2159744348U, 86519011U,
|
||||
2512459080U, 3838209314U, 1220612927U, 3339683548U,
|
||||
133810670U, 1090789135U, 1078426020U, 1569222167U,
|
||||
845107691U, 3583754449U, 4072456591U, 1091646820U,
|
||||
628848692U, 1613405280U, 3757631651U, 526609435U,
|
||||
236106946U, 48312990U, 2942717905U, 3402727701U,
|
||||
1797494240U, 859738849U, 992217954U, 4005476642U,
|
||||
2243076622U, 3870952857U, 3732016268U, 765654824U,
|
||||
3490871365U, 2511836413U, 1685915746U, 3888969200U,
|
||||
1414112111U, 2273134842U, 3281911079U, 4080962846U,
|
||||
172450625U, 2569994100U, 980381355U, 4109958455U,
|
||||
2819808352U, 2716589560U, 2568741196U, 3681446669U,
|
||||
3329971472U, 1835478071U, 660984891U, 3704678404U,
|
||||
4045999559U, 3422617507U, 3040415634U, 1762651403U,
|
||||
1719377915U, 3470491036U, 2693910283U, 3642056355U,
|
||||
3138596744U, 1364962596U, 2073328063U, 1983633131U,
|
||||
926494387U, 3423689081U, 2150032023U, 4096667949U,
|
||||
1749200295U, 3328846651U, 309677260U, 2016342300U,
|
||||
1779581495U, 3079819751U, 111262694U, 1274766160U,
|
||||
443224088U, 298511866U, 1025883608U, 3806446537U,
|
||||
1145181785U, 168956806U, 3641502830U, 3584813610U,
|
||||
1689216846U, 3666258015U, 3200248200U, 1692713982U,
|
||||
2646376535U, 4042768518U, 1618508792U, 1610833997U,
|
||||
3523052358U, 4130873264U, 2001055236U, 3610705100U,
|
||||
2202168115U, 4028541809U, 2961195399U, 1006657119U,
|
||||
2006996926U, 3186142756U, 1430667929U, 3210227297U,
|
||||
1314452623U, 4074634658U, 4101304120U, 2273951170U,
|
||||
1399257539U, 3367210612U, 3027628629U, 1190975929U,
|
||||
2062231137U, 2333990788U, 2221543033U, 2438960610U,
|
||||
1181637006U, 548689776U, 2362791313U, 3372408396U,
|
||||
3104550113U, 3145860560U, 296247880U, 1970579870U,
|
||||
3078560182U, 3769228297U, 1714227617U, 3291629107U,
|
||||
3898220290U, 166772364U, 1251581989U, 493813264U,
|
||||
448347421U, 195405023U, 2709975567U, 677966185U,
|
||||
3703036547U, 1463355134U, 2715995803U, 1338867538U,
|
||||
1343315457U, 2802222074U, 2684532164U, 233230375U,
|
||||
2599980071U, 2000651841U, 3277868038U, 1638401717U,
|
||||
4028070440U, 3237316320U, 6314154U, 819756386U,
|
||||
300326615U, 590932579U, 1405279636U, 3267499572U,
|
||||
3150704214U, 2428286686U, 3959192993U, 3461946742U,
|
||||
1862657033U, 1266418056U, 963775037U, 2089974820U,
|
||||
2263052895U, 1917689273U, 448879540U, 3550394620U,
|
||||
3981727096U, 150775221U, 3627908307U, 1303187396U,
|
||||
508620638U, 2975983352U, 2726630617U, 1817252668U,
|
||||
1876281319U, 1457606340U, 908771278U, 3720792119U,
|
||||
3617206836U, 2455994898U, 1729034894U, 1080033504U,
|
||||
|
||||
976866871U, 3556439503U, 2881648439U, 1522871579U,
|
||||
1555064734U, 1336096578U, 3548522304U, 2579274686U,
|
||||
3574697629U, 3205460757U, 3593280638U, 3338716283U,
|
||||
3079412587U, 564236357U, 2993598910U, 1781952180U,
|
||||
1464380207U, 3163844217U, 3332601554U, 1699332808U,
|
||||
1393555694U, 1183702653U, 3581086237U, 1288719814U,
|
||||
691649499U, 2847557200U, 2895455976U, 3193889540U,
|
||||
2717570544U, 1781354906U, 1676643554U, 2592534050U,
|
||||
3230253752U, 1126444790U, 2770207658U, 2633158820U,
|
||||
2210423226U, 2615765581U, 2414155088U, 3127139286U,
|
||||
673620729U, 2805611233U, 1269405062U, 4015350505U,
|
||||
3341807571U, 4149409754U, 1057255273U, 2012875353U,
|
||||
2162469141U, 2276492801U, 2601117357U, 993977747U,
|
||||
3918593370U, 2654263191U, 753973209U, 36408145U,
|
||||
2530585658U, 25011837U, 3520020182U, 2088578344U,
|
||||
530523599U, 2918365339U, 1524020338U, 1518925132U,
|
||||
3760827505U, 3759777254U, 1202760957U, 3985898139U,
|
||||
3906192525U, 674977740U, 4174734889U, 2031300136U,
|
||||
2019492241U, 3983892565U, 4153806404U, 3822280332U,
|
||||
352677332U, 2297720250U, 60907813U, 90501309U,
|
||||
3286998549U, 1016092578U, 2535922412U, 2839152426U,
|
||||
457141659U, 509813237U, 4120667899U, 652014361U,
|
||||
1966332200U, 2975202805U, 55981186U, 2327461051U,
|
||||
676427537U, 3255491064U, 2882294119U, 3433927263U,
|
||||
1307055953U, 942726286U, 933058658U, 2468411793U,
|
||||
3933900994U, 4215176142U, 1361170020U, 2001714738U,
|
||||
2830558078U, 3274259782U, 1222529897U, 1679025792U,
|
||||
2729314320U, 3714953764U, 1770335741U, 151462246U,
|
||||
3013232138U, 1682292957U, 1483529935U, 471910574U,
|
||||
1539241949U, 458788160U, 3436315007U, 1807016891U,
|
||||
3718408830U, 978976581U, 1043663428U, 3165965781U,
|
||||
1927990952U, 4200891579U, 2372276910U, 3208408903U,
|
||||
3533431907U, 1412390302U, 2931980059U, 4132332400U,
|
||||
1947078029U, 3881505623U, 4168226417U, 2941484381U,
|
||||
1077988104U, 1320477388U, 886195818U, 18198404U,
|
||||
3786409000U, 2509781533U, 112762804U, 3463356488U,
|
||||
1866414978U, 891333506U, 18488651U, 661792760U,
|
||||
1628790961U, 3885187036U, 3141171499U, 876946877U,
|
||||
2693282273U, 1372485963U, 791857591U, 2686433993U,
|
||||
3759982718U, 3167212022U, 3472953795U, 2716379847U,
|
||||
445679433U, 3561995674U, 3504004811U, 3574258232U,
|
||||
54117162U, 3331405415U, 2381918588U, 3769707343U,
|
||||
4154350007U, 1140177722U, 4074052095U, 668550556U,
|
||||
3214352940U, 367459370U, 261225585U, 2610173221U,
|
||||
4209349473U, 3468074219U, 3265815641U, 314222801U,
|
||||
3066103646U, 3808782860U, 282218597U, 3406013506U,
|
||||
3773591054U, 379116347U, 1285071038U, 846784868U,
|
||||
2669647154U, 3771962079U, 3550491691U, 2305946142U,
|
||||
453669953U, 1268987020U, 3317592352U, 3279303384U,
|
||||
3744833421U, 2610507566U, 3859509063U, 266596637U,
|
||||
3847019092U, 517658769U, 3462560207U, 3443424879U,
|
||||
370717030U, 4247526661U, 2224018117U, 4143653529U,
|
||||
4112773975U, 2788324899U, 2477274417U, 1456262402U,
|
||||
2901442914U, 1517677493U, 1846949527U, 2295493580U,
|
||||
3734397586U, 2176403920U, 1280348187U, 1908823572U,
|
||||
3871786941U, 846861322U, 1172426758U, 3287448474U,
|
||||
3383383037U, 1655181056U, 3139813346U, 901632758U,
|
||||
1897031941U, 2986607138U, 3066810236U, 3447102507U,
|
||||
1393639104U, 373351379U, 950779232U, 625454576U,
|
||||
3124240540U, 4148612726U, 2007998917U, 544563296U,
|
||||
2244738638U, 2330496472U, 2058025392U, 1291430526U,
|
||||
424198748U, 50039436U, 29584100U, 3605783033U,
|
||||
2429876329U, 2791104160U, 1057563949U, 3255363231U,
|
||||
3075367218U, 3463963227U, 1469046755U, 985887462U
|
||||
};
|
||||
|
||||
|
||||
// this version is only used to make pbox and sbox
|
||||
static void crypt_block(BF_KEY *key, const word32 in[2], word32 out[2])
|
||||
{
|
||||
word32 left = in[0];
|
||||
word32 right = in[1];
|
||||
|
||||
const word32 *const s=key->sbox;
|
||||
const word32 *p=key->pbox;
|
||||
|
||||
unsigned i;
|
||||
|
||||
left ^= p[0];
|
||||
|
||||
for (i=0; i<ROUNDS/2; i++)
|
||||
{
|
||||
right ^= (((s[GETBYTE(left,3)] + s[256+GETBYTE(left,2)])
|
||||
^ s[2*256+GETBYTE(left,1)]) + s[3*256+GETBYTE(left,0)])
|
||||
^ p[2*i+1];
|
||||
|
||||
left ^= (((s[GETBYTE(right,3)] + s[256+GETBYTE(right,2)])
|
||||
^ s[2*256+GETBYTE(right,1)]) + s[3*256+GETBYTE(right,0)])
|
||||
^ p[2*i+2];
|
||||
}
|
||||
|
||||
right ^= p[ROUNDS+1];
|
||||
|
||||
out[0] = right;
|
||||
out[1] = left;
|
||||
}
|
||||
|
||||
|
||||
void BlowfishSetKey (BF_KEY *key, int keylength, unsigned char *key_string)
|
||||
{
|
||||
unsigned i, j=0, k;
|
||||
word32 data, dspace[2] = {0, 0};
|
||||
word32 *sbox = key->sbox;
|
||||
word32 *pbox = key->pbox;
|
||||
|
||||
memcpy(pbox, p_init, sizeof(p_init));
|
||||
memcpy(sbox, s_init, sizeof(s_init));
|
||||
|
||||
// Xor key string into encryption key vector
|
||||
for (i=0 ; i<ROUNDS+2 ; ++i)
|
||||
{
|
||||
data = 0 ;
|
||||
for (k=0 ; k<4 ; ++k )
|
||||
data = (data << 8) | key_string[j++ % keylength];
|
||||
pbox[i] ^= data;
|
||||
}
|
||||
|
||||
crypt_block(key, dspace, pbox);
|
||||
|
||||
for (i=0; i<ROUNDS; i+=2)
|
||||
crypt_block(key, pbox+i, pbox+i+2);
|
||||
|
||||
crypt_block(key, pbox+ROUNDS, sbox);
|
||||
|
||||
for (i=0; i<4*256-2; i+=2)
|
||||
crypt_block(key, sbox+i, sbox+i+2);
|
||||
|
||||
for (i=0; i < ROUNDS+2; i++)
|
||||
key->pbox_dec[ROUNDS+1-i] = pbox[i];
|
||||
}
|
||||
|
||||
|
||||
void BlowfishEncryptLE (unsigned char *inBlock, unsigned char *outBlock, BF_KEY *key, int encrypt)
|
||||
{
|
||||
word32 left = LE32 (((word32 *) inBlock)[0]);
|
||||
word32 right = LE32 (((word32 *) inBlock)[1]);
|
||||
|
||||
const word32 *const s = key->sbox;
|
||||
const word32 * p = encrypt ? key->pbox : key->pbox_dec;
|
||||
|
||||
unsigned i;
|
||||
|
||||
left ^= p[0];
|
||||
|
||||
for (i=0; i<ROUNDS/2; i++)
|
||||
{
|
||||
right ^= (((s[GETBYTE(left,3)] + s[256+GETBYTE(left,2)])
|
||||
^ s[2*256+GETBYTE(left,1)]) + s[3*256+GETBYTE(left,0)])
|
||||
^ p[2*i+1];
|
||||
|
||||
left ^= (((s[GETBYTE(right,3)] + s[256+GETBYTE(right,2)])
|
||||
^ s[2*256+GETBYTE(right,1)]) + s[3*256+GETBYTE(right,0)])
|
||||
^ p[2*i+2];
|
||||
}
|
||||
|
||||
right ^= p[ROUNDS+1];
|
||||
|
||||
((word32 *) outBlock)[0] = LE32 (right);
|
||||
((word32 *) outBlock)[1] = LE32 (left);
|
||||
}
|
||||
25
src/Crypto/Blowfish.h
Normal file
25
src/Crypto/Blowfish.h
Normal file
@@ -0,0 +1,25 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
#ifndef TC_HEADER_Crypto_Blowfish
|
||||
#define TC_HEADER_Crypto_Blowfish
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct BF_KEY_STRUCT
|
||||
{
|
||||
unsigned __int32 pbox[18];
|
||||
unsigned __int32 pbox_dec[18];
|
||||
unsigned __int32 sbox[4*256];
|
||||
} BF_KEY;
|
||||
|
||||
void BlowfishSetKey (BF_KEY *key, int keylength, unsigned char *key_string);
|
||||
void BlowfishEncryptLE (unsigned char *in, unsigned char *out, BF_KEY *ks, int encrypt);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // TC_HEADER_Crypto_Blowfish
|
||||
703
src/Crypto/Cast.c
Normal file
703
src/Crypto/Cast.c
Normal file
@@ -0,0 +1,703 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
// cast.cpp - written and placed in the public domain by Wei Dai and Leonard Janke
|
||||
// based on Steve Reid's public domain cast.c
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#include <memory.h>
|
||||
#include "Common/Tcdefs.h"
|
||||
#include "Common/Endian.h"
|
||||
#include "Cast.h"
|
||||
|
||||
#define word32 unsigned __int32
|
||||
#define byte unsigned __int8
|
||||
#define GETBYTE(x, y) (unsigned int)(byte)((x)>>(8*(y)))
|
||||
|
||||
/* Macros to access 8-bit bytes out of a 32-bit word */
|
||||
#define U8a(x) GETBYTE(x,3)
|
||||
#define U8b(x) GETBYTE(x,2)
|
||||
#define U8c(x) GETBYTE(x,1)
|
||||
#define U8d(x) GETBYTE(x,0)
|
||||
|
||||
static word32 rotlVariable (word32 x, unsigned int y)
|
||||
{
|
||||
return (word32)((x<<y) | (x>>(sizeof(word32)*8-y)));
|
||||
}
|
||||
|
||||
|
||||
// CAST S-boxes
|
||||
|
||||
static const word32 S[8][256] = {
|
||||
{
|
||||
0x30FB40D4UL, 0x9FA0FF0BUL, 0x6BECCD2FUL, 0x3F258C7AUL,
|
||||
0x1E213F2FUL, 0x9C004DD3UL, 0x6003E540UL, 0xCF9FC949UL,
|
||||
0xBFD4AF27UL, 0x88BBBDB5UL, 0xE2034090UL, 0x98D09675UL,
|
||||
0x6E63A0E0UL, 0x15C361D2UL, 0xC2E7661DUL, 0x22D4FF8EUL,
|
||||
0x28683B6FUL, 0xC07FD059UL, 0xFF2379C8UL, 0x775F50E2UL,
|
||||
0x43C340D3UL, 0xDF2F8656UL, 0x887CA41AUL, 0xA2D2BD2DUL,
|
||||
0xA1C9E0D6UL, 0x346C4819UL, 0x61B76D87UL, 0x22540F2FUL,
|
||||
0x2ABE32E1UL, 0xAA54166BUL, 0x22568E3AUL, 0xA2D341D0UL,
|
||||
0x66DB40C8UL, 0xA784392FUL, 0x004DFF2FUL, 0x2DB9D2DEUL,
|
||||
0x97943FACUL, 0x4A97C1D8UL, 0x527644B7UL, 0xB5F437A7UL,
|
||||
0xB82CBAEFUL, 0xD751D159UL, 0x6FF7F0EDUL, 0x5A097A1FUL,
|
||||
0x827B68D0UL, 0x90ECF52EUL, 0x22B0C054UL, 0xBC8E5935UL,
|
||||
0x4B6D2F7FUL, 0x50BB64A2UL, 0xD2664910UL, 0xBEE5812DUL,
|
||||
0xB7332290UL, 0xE93B159FUL, 0xB48EE411UL, 0x4BFF345DUL,
|
||||
0xFD45C240UL, 0xAD31973FUL, 0xC4F6D02EUL, 0x55FC8165UL,
|
||||
0xD5B1CAADUL, 0xA1AC2DAEUL, 0xA2D4B76DUL, 0xC19B0C50UL,
|
||||
0x882240F2UL, 0x0C6E4F38UL, 0xA4E4BFD7UL, 0x4F5BA272UL,
|
||||
0x564C1D2FUL, 0xC59C5319UL, 0xB949E354UL, 0xB04669FEUL,
|
||||
0xB1B6AB8AUL, 0xC71358DDUL, 0x6385C545UL, 0x110F935DUL,
|
||||
0x57538AD5UL, 0x6A390493UL, 0xE63D37E0UL, 0x2A54F6B3UL,
|
||||
0x3A787D5FUL, 0x6276A0B5UL, 0x19A6FCDFUL, 0x7A42206AUL,
|
||||
0x29F9D4D5UL, 0xF61B1891UL, 0xBB72275EUL, 0xAA508167UL,
|
||||
0x38901091UL, 0xC6B505EBUL, 0x84C7CB8CUL, 0x2AD75A0FUL,
|
||||
0x874A1427UL, 0xA2D1936BUL, 0x2AD286AFUL, 0xAA56D291UL,
|
||||
0xD7894360UL, 0x425C750DUL, 0x93B39E26UL, 0x187184C9UL,
|
||||
0x6C00B32DUL, 0x73E2BB14UL, 0xA0BEBC3CUL, 0x54623779UL,
|
||||
0x64459EABUL, 0x3F328B82UL, 0x7718CF82UL, 0x59A2CEA6UL,
|
||||
0x04EE002EUL, 0x89FE78E6UL, 0x3FAB0950UL, 0x325FF6C2UL,
|
||||
0x81383F05UL, 0x6963C5C8UL, 0x76CB5AD6UL, 0xD49974C9UL,
|
||||
0xCA180DCFUL, 0x380782D5UL, 0xC7FA5CF6UL, 0x8AC31511UL,
|
||||
0x35E79E13UL, 0x47DA91D0UL, 0xF40F9086UL, 0xA7E2419EUL,
|
||||
0x31366241UL, 0x051EF495UL, 0xAA573B04UL, 0x4A805D8DUL,
|
||||
0x548300D0UL, 0x00322A3CUL, 0xBF64CDDFUL, 0xBA57A68EUL,
|
||||
0x75C6372BUL, 0x50AFD341UL, 0xA7C13275UL, 0x915A0BF5UL,
|
||||
0x6B54BFABUL, 0x2B0B1426UL, 0xAB4CC9D7UL, 0x449CCD82UL,
|
||||
0xF7FBF265UL, 0xAB85C5F3UL, 0x1B55DB94UL, 0xAAD4E324UL,
|
||||
0xCFA4BD3FUL, 0x2DEAA3E2UL, 0x9E204D02UL, 0xC8BD25ACUL,
|
||||
0xEADF55B3UL, 0xD5BD9E98UL, 0xE31231B2UL, 0x2AD5AD6CUL,
|
||||
0x954329DEUL, 0xADBE4528UL, 0xD8710F69UL, 0xAA51C90FUL,
|
||||
0xAA786BF6UL, 0x22513F1EUL, 0xAA51A79BUL, 0x2AD344CCUL,
|
||||
0x7B5A41F0UL, 0xD37CFBADUL, 0x1B069505UL, 0x41ECE491UL,
|
||||
0xB4C332E6UL, 0x032268D4UL, 0xC9600ACCUL, 0xCE387E6DUL,
|
||||
0xBF6BB16CUL, 0x6A70FB78UL, 0x0D03D9C9UL, 0xD4DF39DEUL,
|
||||
0xE01063DAUL, 0x4736F464UL, 0x5AD328D8UL, 0xB347CC96UL,
|
||||
0x75BB0FC3UL, 0x98511BFBUL, 0x4FFBCC35UL, 0xB58BCF6AUL,
|
||||
0xE11F0ABCUL, 0xBFC5FE4AUL, 0xA70AEC10UL, 0xAC39570AUL,
|
||||
0x3F04442FUL, 0x6188B153UL, 0xE0397A2EUL, 0x5727CB79UL,
|
||||
0x9CEB418FUL, 0x1CACD68DUL, 0x2AD37C96UL, 0x0175CB9DUL,
|
||||
0xC69DFF09UL, 0xC75B65F0UL, 0xD9DB40D8UL, 0xEC0E7779UL,
|
||||
0x4744EAD4UL, 0xB11C3274UL, 0xDD24CB9EUL, 0x7E1C54BDUL,
|
||||
0xF01144F9UL, 0xD2240EB1UL, 0x9675B3FDUL, 0xA3AC3755UL,
|
||||
0xD47C27AFUL, 0x51C85F4DUL, 0x56907596UL, 0xA5BB15E6UL,
|
||||
0x580304F0UL, 0xCA042CF1UL, 0x011A37EAUL, 0x8DBFAADBUL,
|
||||
0x35BA3E4AUL, 0x3526FFA0UL, 0xC37B4D09UL, 0xBC306ED9UL,
|
||||
0x98A52666UL, 0x5648F725UL, 0xFF5E569DUL, 0x0CED63D0UL,
|
||||
0x7C63B2CFUL, 0x700B45E1UL, 0xD5EA50F1UL, 0x85A92872UL,
|
||||
0xAF1FBDA7UL, 0xD4234870UL, 0xA7870BF3UL, 0x2D3B4D79UL,
|
||||
0x42E04198UL, 0x0CD0EDE7UL, 0x26470DB8UL, 0xF881814CUL,
|
||||
0x474D6AD7UL, 0x7C0C5E5CUL, 0xD1231959UL, 0x381B7298UL,
|
||||
0xF5D2F4DBUL, 0xAB838653UL, 0x6E2F1E23UL, 0x83719C9EUL,
|
||||
0xBD91E046UL, 0x9A56456EUL, 0xDC39200CUL, 0x20C8C571UL,
|
||||
0x962BDA1CUL, 0xE1E696FFUL, 0xB141AB08UL, 0x7CCA89B9UL,
|
||||
0x1A69E783UL, 0x02CC4843UL, 0xA2F7C579UL, 0x429EF47DUL,
|
||||
0x427B169CUL, 0x5AC9F049UL, 0xDD8F0F00UL, 0x5C8165BFUL
|
||||
},
|
||||
|
||||
{
|
||||
0x1F201094UL, 0xEF0BA75BUL, 0x69E3CF7EUL, 0x393F4380UL,
|
||||
0xFE61CF7AUL, 0xEEC5207AUL, 0x55889C94UL, 0x72FC0651UL,
|
||||
0xADA7EF79UL, 0x4E1D7235UL, 0xD55A63CEUL, 0xDE0436BAUL,
|
||||
0x99C430EFUL, 0x5F0C0794UL, 0x18DCDB7DUL, 0xA1D6EFF3UL,
|
||||
0xA0B52F7BUL, 0x59E83605UL, 0xEE15B094UL, 0xE9FFD909UL,
|
||||
0xDC440086UL, 0xEF944459UL, 0xBA83CCB3UL, 0xE0C3CDFBUL,
|
||||
0xD1DA4181UL, 0x3B092AB1UL, 0xF997F1C1UL, 0xA5E6CF7BUL,
|
||||
0x01420DDBUL, 0xE4E7EF5BUL, 0x25A1FF41UL, 0xE180F806UL,
|
||||
0x1FC41080UL, 0x179BEE7AUL, 0xD37AC6A9UL, 0xFE5830A4UL,
|
||||
0x98DE8B7FUL, 0x77E83F4EUL, 0x79929269UL, 0x24FA9F7BUL,
|
||||
0xE113C85BUL, 0xACC40083UL, 0xD7503525UL, 0xF7EA615FUL,
|
||||
0x62143154UL, 0x0D554B63UL, 0x5D681121UL, 0xC866C359UL,
|
||||
0x3D63CF73UL, 0xCEE234C0UL, 0xD4D87E87UL, 0x5C672B21UL,
|
||||
0x071F6181UL, 0x39F7627FUL, 0x361E3084UL, 0xE4EB573BUL,
|
||||
0x602F64A4UL, 0xD63ACD9CUL, 0x1BBC4635UL, 0x9E81032DUL,
|
||||
0x2701F50CUL, 0x99847AB4UL, 0xA0E3DF79UL, 0xBA6CF38CUL,
|
||||
0x10843094UL, 0x2537A95EUL, 0xF46F6FFEUL, 0xA1FF3B1FUL,
|
||||
0x208CFB6AUL, 0x8F458C74UL, 0xD9E0A227UL, 0x4EC73A34UL,
|
||||
0xFC884F69UL, 0x3E4DE8DFUL, 0xEF0E0088UL, 0x3559648DUL,
|
||||
0x8A45388CUL, 0x1D804366UL, 0x721D9BFDUL, 0xA58684BBUL,
|
||||
0xE8256333UL, 0x844E8212UL, 0x128D8098UL, 0xFED33FB4UL,
|
||||
0xCE280AE1UL, 0x27E19BA5UL, 0xD5A6C252UL, 0xE49754BDUL,
|
||||
0xC5D655DDUL, 0xEB667064UL, 0x77840B4DUL, 0xA1B6A801UL,
|
||||
0x84DB26A9UL, 0xE0B56714UL, 0x21F043B7UL, 0xE5D05860UL,
|
||||
0x54F03084UL, 0x066FF472UL, 0xA31AA153UL, 0xDADC4755UL,
|
||||
0xB5625DBFUL, 0x68561BE6UL, 0x83CA6B94UL, 0x2D6ED23BUL,
|
||||
0xECCF01DBUL, 0xA6D3D0BAUL, 0xB6803D5CUL, 0xAF77A709UL,
|
||||
0x33B4A34CUL, 0x397BC8D6UL, 0x5EE22B95UL, 0x5F0E5304UL,
|
||||
0x81ED6F61UL, 0x20E74364UL, 0xB45E1378UL, 0xDE18639BUL,
|
||||
0x881CA122UL, 0xB96726D1UL, 0x8049A7E8UL, 0x22B7DA7BUL,
|
||||
0x5E552D25UL, 0x5272D237UL, 0x79D2951CUL, 0xC60D894CUL,
|
||||
0x488CB402UL, 0x1BA4FE5BUL, 0xA4B09F6BUL, 0x1CA815CFUL,
|
||||
0xA20C3005UL, 0x8871DF63UL, 0xB9DE2FCBUL, 0x0CC6C9E9UL,
|
||||
0x0BEEFF53UL, 0xE3214517UL, 0xB4542835UL, 0x9F63293CUL,
|
||||
0xEE41E729UL, 0x6E1D2D7CUL, 0x50045286UL, 0x1E6685F3UL,
|
||||
0xF33401C6UL, 0x30A22C95UL, 0x31A70850UL, 0x60930F13UL,
|
||||
0x73F98417UL, 0xA1269859UL, 0xEC645C44UL, 0x52C877A9UL,
|
||||
0xCDFF33A6UL, 0xA02B1741UL, 0x7CBAD9A2UL, 0x2180036FUL,
|
||||
0x50D99C08UL, 0xCB3F4861UL, 0xC26BD765UL, 0x64A3F6ABUL,
|
||||
0x80342676UL, 0x25A75E7BUL, 0xE4E6D1FCUL, 0x20C710E6UL,
|
||||
0xCDF0B680UL, 0x17844D3BUL, 0x31EEF84DUL, 0x7E0824E4UL,
|
||||
0x2CCB49EBUL, 0x846A3BAEUL, 0x8FF77888UL, 0xEE5D60F6UL,
|
||||
0x7AF75673UL, 0x2FDD5CDBUL, 0xA11631C1UL, 0x30F66F43UL,
|
||||
0xB3FAEC54UL, 0x157FD7FAUL, 0xEF8579CCUL, 0xD152DE58UL,
|
||||
0xDB2FFD5EUL, 0x8F32CE19UL, 0x306AF97AUL, 0x02F03EF8UL,
|
||||
0x99319AD5UL, 0xC242FA0FUL, 0xA7E3EBB0UL, 0xC68E4906UL,
|
||||
0xB8DA230CUL, 0x80823028UL, 0xDCDEF3C8UL, 0xD35FB171UL,
|
||||
0x088A1BC8UL, 0xBEC0C560UL, 0x61A3C9E8UL, 0xBCA8F54DUL,
|
||||
0xC72FEFFAUL, 0x22822E99UL, 0x82C570B4UL, 0xD8D94E89UL,
|
||||
0x8B1C34BCUL, 0x301E16E6UL, 0x273BE979UL, 0xB0FFEAA6UL,
|
||||
0x61D9B8C6UL, 0x00B24869UL, 0xB7FFCE3FUL, 0x08DC283BUL,
|
||||
0x43DAF65AUL, 0xF7E19798UL, 0x7619B72FUL, 0x8F1C9BA4UL,
|
||||
0xDC8637A0UL, 0x16A7D3B1UL, 0x9FC393B7UL, 0xA7136EEBUL,
|
||||
0xC6BCC63EUL, 0x1A513742UL, 0xEF6828BCUL, 0x520365D6UL,
|
||||
0x2D6A77ABUL, 0x3527ED4BUL, 0x821FD216UL, 0x095C6E2EUL,
|
||||
0xDB92F2FBUL, 0x5EEA29CBUL, 0x145892F5UL, 0x91584F7FUL,
|
||||
0x5483697BUL, 0x2667A8CCUL, 0x85196048UL, 0x8C4BACEAUL,
|
||||
0x833860D4UL, 0x0D23E0F9UL, 0x6C387E8AUL, 0x0AE6D249UL,
|
||||
0xB284600CUL, 0xD835731DUL, 0xDCB1C647UL, 0xAC4C56EAUL,
|
||||
0x3EBD81B3UL, 0x230EABB0UL, 0x6438BC87UL, 0xF0B5B1FAUL,
|
||||
0x8F5EA2B3UL, 0xFC184642UL, 0x0A036B7AUL, 0x4FB089BDUL,
|
||||
0x649DA589UL, 0xA345415EUL, 0x5C038323UL, 0x3E5D3BB9UL,
|
||||
0x43D79572UL, 0x7E6DD07CUL, 0x06DFDF1EUL, 0x6C6CC4EFUL,
|
||||
0x7160A539UL, 0x73BFBE70UL, 0x83877605UL, 0x4523ECF1UL
|
||||
},
|
||||
|
||||
{
|
||||
0x8DEFC240UL, 0x25FA5D9FUL, 0xEB903DBFUL, 0xE810C907UL,
|
||||
0x47607FFFUL, 0x369FE44BUL, 0x8C1FC644UL, 0xAECECA90UL,
|
||||
0xBEB1F9BFUL, 0xEEFBCAEAUL, 0xE8CF1950UL, 0x51DF07AEUL,
|
||||
0x920E8806UL, 0xF0AD0548UL, 0xE13C8D83UL, 0x927010D5UL,
|
||||
0x11107D9FUL, 0x07647DB9UL, 0xB2E3E4D4UL, 0x3D4F285EUL,
|
||||
0xB9AFA820UL, 0xFADE82E0UL, 0xA067268BUL, 0x8272792EUL,
|
||||
0x553FB2C0UL, 0x489AE22BUL, 0xD4EF9794UL, 0x125E3FBCUL,
|
||||
0x21FFFCEEUL, 0x825B1BFDUL, 0x9255C5EDUL, 0x1257A240UL,
|
||||
0x4E1A8302UL, 0xBAE07FFFUL, 0x528246E7UL, 0x8E57140EUL,
|
||||
0x3373F7BFUL, 0x8C9F8188UL, 0xA6FC4EE8UL, 0xC982B5A5UL,
|
||||
0xA8C01DB7UL, 0x579FC264UL, 0x67094F31UL, 0xF2BD3F5FUL,
|
||||
0x40FFF7C1UL, 0x1FB78DFCUL, 0x8E6BD2C1UL, 0x437BE59BUL,
|
||||
0x99B03DBFUL, 0xB5DBC64BUL, 0x638DC0E6UL, 0x55819D99UL,
|
||||
0xA197C81CUL, 0x4A012D6EUL, 0xC5884A28UL, 0xCCC36F71UL,
|
||||
0xB843C213UL, 0x6C0743F1UL, 0x8309893CUL, 0x0FEDDD5FUL,
|
||||
0x2F7FE850UL, 0xD7C07F7EUL, 0x02507FBFUL, 0x5AFB9A04UL,
|
||||
0xA747D2D0UL, 0x1651192EUL, 0xAF70BF3EUL, 0x58C31380UL,
|
||||
0x5F98302EUL, 0x727CC3C4UL, 0x0A0FB402UL, 0x0F7FEF82UL,
|
||||
0x8C96FDADUL, 0x5D2C2AAEUL, 0x8EE99A49UL, 0x50DA88B8UL,
|
||||
0x8427F4A0UL, 0x1EAC5790UL, 0x796FB449UL, 0x8252DC15UL,
|
||||
0xEFBD7D9BUL, 0xA672597DUL, 0xADA840D8UL, 0x45F54504UL,
|
||||
0xFA5D7403UL, 0xE83EC305UL, 0x4F91751AUL, 0x925669C2UL,
|
||||
0x23EFE941UL, 0xA903F12EUL, 0x60270DF2UL, 0x0276E4B6UL,
|
||||
0x94FD6574UL, 0x927985B2UL, 0x8276DBCBUL, 0x02778176UL,
|
||||
0xF8AF918DUL, 0x4E48F79EUL, 0x8F616DDFUL, 0xE29D840EUL,
|
||||
0x842F7D83UL, 0x340CE5C8UL, 0x96BBB682UL, 0x93B4B148UL,
|
||||
0xEF303CABUL, 0x984FAF28UL, 0x779FAF9BUL, 0x92DC560DUL,
|
||||
0x224D1E20UL, 0x8437AA88UL, 0x7D29DC96UL, 0x2756D3DCUL,
|
||||
0x8B907CEEUL, 0xB51FD240UL, 0xE7C07CE3UL, 0xE566B4A1UL,
|
||||
0xC3E9615EUL, 0x3CF8209DUL, 0x6094D1E3UL, 0xCD9CA341UL,
|
||||
0x5C76460EUL, 0x00EA983BUL, 0xD4D67881UL, 0xFD47572CUL,
|
||||
0xF76CEDD9UL, 0xBDA8229CUL, 0x127DADAAUL, 0x438A074EUL,
|
||||
0x1F97C090UL, 0x081BDB8AUL, 0x93A07EBEUL, 0xB938CA15UL,
|
||||
0x97B03CFFUL, 0x3DC2C0F8UL, 0x8D1AB2ECUL, 0x64380E51UL,
|
||||
0x68CC7BFBUL, 0xD90F2788UL, 0x12490181UL, 0x5DE5FFD4UL,
|
||||
0xDD7EF86AUL, 0x76A2E214UL, 0xB9A40368UL, 0x925D958FUL,
|
||||
0x4B39FFFAUL, 0xBA39AEE9UL, 0xA4FFD30BUL, 0xFAF7933BUL,
|
||||
0x6D498623UL, 0x193CBCFAUL, 0x27627545UL, 0x825CF47AUL,
|
||||
0x61BD8BA0UL, 0xD11E42D1UL, 0xCEAD04F4UL, 0x127EA392UL,
|
||||
0x10428DB7UL, 0x8272A972UL, 0x9270C4A8UL, 0x127DE50BUL,
|
||||
0x285BA1C8UL, 0x3C62F44FUL, 0x35C0EAA5UL, 0xE805D231UL,
|
||||
0x428929FBUL, 0xB4FCDF82UL, 0x4FB66A53UL, 0x0E7DC15BUL,
|
||||
0x1F081FABUL, 0x108618AEUL, 0xFCFD086DUL, 0xF9FF2889UL,
|
||||
0x694BCC11UL, 0x236A5CAEUL, 0x12DECA4DUL, 0x2C3F8CC5UL,
|
||||
0xD2D02DFEUL, 0xF8EF5896UL, 0xE4CF52DAUL, 0x95155B67UL,
|
||||
0x494A488CUL, 0xB9B6A80CUL, 0x5C8F82BCUL, 0x89D36B45UL,
|
||||
0x3A609437UL, 0xEC00C9A9UL, 0x44715253UL, 0x0A874B49UL,
|
||||
0xD773BC40UL, 0x7C34671CUL, 0x02717EF6UL, 0x4FEB5536UL,
|
||||
0xA2D02FFFUL, 0xD2BF60C4UL, 0xD43F03C0UL, 0x50B4EF6DUL,
|
||||
0x07478CD1UL, 0x006E1888UL, 0xA2E53F55UL, 0xB9E6D4BCUL,
|
||||
0xA2048016UL, 0x97573833UL, 0xD7207D67UL, 0xDE0F8F3DUL,
|
||||
0x72F87B33UL, 0xABCC4F33UL, 0x7688C55DUL, 0x7B00A6B0UL,
|
||||
0x947B0001UL, 0x570075D2UL, 0xF9BB88F8UL, 0x8942019EUL,
|
||||
0x4264A5FFUL, 0x856302E0UL, 0x72DBD92BUL, 0xEE971B69UL,
|
||||
0x6EA22FDEUL, 0x5F08AE2BUL, 0xAF7A616DUL, 0xE5C98767UL,
|
||||
0xCF1FEBD2UL, 0x61EFC8C2UL, 0xF1AC2571UL, 0xCC8239C2UL,
|
||||
0x67214CB8UL, 0xB1E583D1UL, 0xB7DC3E62UL, 0x7F10BDCEUL,
|
||||
0xF90A5C38UL, 0x0FF0443DUL, 0x606E6DC6UL, 0x60543A49UL,
|
||||
0x5727C148UL, 0x2BE98A1DUL, 0x8AB41738UL, 0x20E1BE24UL,
|
||||
0xAF96DA0FUL, 0x68458425UL, 0x99833BE5UL, 0x600D457DUL,
|
||||
0x282F9350UL, 0x8334B362UL, 0xD91D1120UL, 0x2B6D8DA0UL,
|
||||
0x642B1E31UL, 0x9C305A00UL, 0x52BCE688UL, 0x1B03588AUL,
|
||||
0xF7BAEFD5UL, 0x4142ED9CUL, 0xA4315C11UL, 0x83323EC5UL,
|
||||
0xDFEF4636UL, 0xA133C501UL, 0xE9D3531CUL, 0xEE353783UL
|
||||
},
|
||||
|
||||
{
|
||||
0x9DB30420UL, 0x1FB6E9DEUL, 0xA7BE7BEFUL, 0xD273A298UL,
|
||||
0x4A4F7BDBUL, 0x64AD8C57UL, 0x85510443UL, 0xFA020ED1UL,
|
||||
0x7E287AFFUL, 0xE60FB663UL, 0x095F35A1UL, 0x79EBF120UL,
|
||||
0xFD059D43UL, 0x6497B7B1UL, 0xF3641F63UL, 0x241E4ADFUL,
|
||||
0x28147F5FUL, 0x4FA2B8CDUL, 0xC9430040UL, 0x0CC32220UL,
|
||||
0xFDD30B30UL, 0xC0A5374FUL, 0x1D2D00D9UL, 0x24147B15UL,
|
||||
0xEE4D111AUL, 0x0FCA5167UL, 0x71FF904CUL, 0x2D195FFEUL,
|
||||
0x1A05645FUL, 0x0C13FEFEUL, 0x081B08CAUL, 0x05170121UL,
|
||||
0x80530100UL, 0xE83E5EFEUL, 0xAC9AF4F8UL, 0x7FE72701UL,
|
||||
0xD2B8EE5FUL, 0x06DF4261UL, 0xBB9E9B8AUL, 0x7293EA25UL,
|
||||
0xCE84FFDFUL, 0xF5718801UL, 0x3DD64B04UL, 0xA26F263BUL,
|
||||
0x7ED48400UL, 0x547EEBE6UL, 0x446D4CA0UL, 0x6CF3D6F5UL,
|
||||
0x2649ABDFUL, 0xAEA0C7F5UL, 0x36338CC1UL, 0x503F7E93UL,
|
||||
0xD3772061UL, 0x11B638E1UL, 0x72500E03UL, 0xF80EB2BBUL,
|
||||
0xABE0502EUL, 0xEC8D77DEUL, 0x57971E81UL, 0xE14F6746UL,
|
||||
0xC9335400UL, 0x6920318FUL, 0x081DBB99UL, 0xFFC304A5UL,
|
||||
0x4D351805UL, 0x7F3D5CE3UL, 0xA6C866C6UL, 0x5D5BCCA9UL,
|
||||
0xDAEC6FEAUL, 0x9F926F91UL, 0x9F46222FUL, 0x3991467DUL,
|
||||
0xA5BF6D8EUL, 0x1143C44FUL, 0x43958302UL, 0xD0214EEBUL,
|
||||
0x022083B8UL, 0x3FB6180CUL, 0x18F8931EUL, 0x281658E6UL,
|
||||
0x26486E3EUL, 0x8BD78A70UL, 0x7477E4C1UL, 0xB506E07CUL,
|
||||
0xF32D0A25UL, 0x79098B02UL, 0xE4EABB81UL, 0x28123B23UL,
|
||||
0x69DEAD38UL, 0x1574CA16UL, 0xDF871B62UL, 0x211C40B7UL,
|
||||
0xA51A9EF9UL, 0x0014377BUL, 0x041E8AC8UL, 0x09114003UL,
|
||||
0xBD59E4D2UL, 0xE3D156D5UL, 0x4FE876D5UL, 0x2F91A340UL,
|
||||
0x557BE8DEUL, 0x00EAE4A7UL, 0x0CE5C2ECUL, 0x4DB4BBA6UL,
|
||||
0xE756BDFFUL, 0xDD3369ACUL, 0xEC17B035UL, 0x06572327UL,
|
||||
0x99AFC8B0UL, 0x56C8C391UL, 0x6B65811CUL, 0x5E146119UL,
|
||||
0x6E85CB75UL, 0xBE07C002UL, 0xC2325577UL, 0x893FF4ECUL,
|
||||
0x5BBFC92DUL, 0xD0EC3B25UL, 0xB7801AB7UL, 0x8D6D3B24UL,
|
||||
0x20C763EFUL, 0xC366A5FCUL, 0x9C382880UL, 0x0ACE3205UL,
|
||||
0xAAC9548AUL, 0xECA1D7C7UL, 0x041AFA32UL, 0x1D16625AUL,
|
||||
0x6701902CUL, 0x9B757A54UL, 0x31D477F7UL, 0x9126B031UL,
|
||||
0x36CC6FDBUL, 0xC70B8B46UL, 0xD9E66A48UL, 0x56E55A79UL,
|
||||
0x026A4CEBUL, 0x52437EFFUL, 0x2F8F76B4UL, 0x0DF980A5UL,
|
||||
0x8674CDE3UL, 0xEDDA04EBUL, 0x17A9BE04UL, 0x2C18F4DFUL,
|
||||
0xB7747F9DUL, 0xAB2AF7B4UL, 0xEFC34D20UL, 0x2E096B7CUL,
|
||||
0x1741A254UL, 0xE5B6A035UL, 0x213D42F6UL, 0x2C1C7C26UL,
|
||||
0x61C2F50FUL, 0x6552DAF9UL, 0xD2C231F8UL, 0x25130F69UL,
|
||||
0xD8167FA2UL, 0x0418F2C8UL, 0x001A96A6UL, 0x0D1526ABUL,
|
||||
0x63315C21UL, 0x5E0A72ECUL, 0x49BAFEFDUL, 0x187908D9UL,
|
||||
0x8D0DBD86UL, 0x311170A7UL, 0x3E9B640CUL, 0xCC3E10D7UL,
|
||||
0xD5CAD3B6UL, 0x0CAEC388UL, 0xF73001E1UL, 0x6C728AFFUL,
|
||||
0x71EAE2A1UL, 0x1F9AF36EUL, 0xCFCBD12FUL, 0xC1DE8417UL,
|
||||
0xAC07BE6BUL, 0xCB44A1D8UL, 0x8B9B0F56UL, 0x013988C3UL,
|
||||
0xB1C52FCAUL, 0xB4BE31CDUL, 0xD8782806UL, 0x12A3A4E2UL,
|
||||
0x6F7DE532UL, 0x58FD7EB6UL, 0xD01EE900UL, 0x24ADFFC2UL,
|
||||
0xF4990FC5UL, 0x9711AAC5UL, 0x001D7B95UL, 0x82E5E7D2UL,
|
||||
0x109873F6UL, 0x00613096UL, 0xC32D9521UL, 0xADA121FFUL,
|
||||
0x29908415UL, 0x7FBB977FUL, 0xAF9EB3DBUL, 0x29C9ED2AUL,
|
||||
0x5CE2A465UL, 0xA730F32CUL, 0xD0AA3FE8UL, 0x8A5CC091UL,
|
||||
0xD49E2CE7UL, 0x0CE454A9UL, 0xD60ACD86UL, 0x015F1919UL,
|
||||
0x77079103UL, 0xDEA03AF6UL, 0x78A8565EUL, 0xDEE356DFUL,
|
||||
0x21F05CBEUL, 0x8B75E387UL, 0xB3C50651UL, 0xB8A5C3EFUL,
|
||||
0xD8EEB6D2UL, 0xE523BE77UL, 0xC2154529UL, 0x2F69EFDFUL,
|
||||
0xAFE67AFBUL, 0xF470C4B2UL, 0xF3E0EB5BUL, 0xD6CC9876UL,
|
||||
0x39E4460CUL, 0x1FDA8538UL, 0x1987832FUL, 0xCA007367UL,
|
||||
0xA99144F8UL, 0x296B299EUL, 0x492FC295UL, 0x9266BEABUL,
|
||||
0xB5676E69UL, 0x9BD3DDDAUL, 0xDF7E052FUL, 0xDB25701CUL,
|
||||
0x1B5E51EEUL, 0xF65324E6UL, 0x6AFCE36CUL, 0x0316CC04UL,
|
||||
0x8644213EUL, 0xB7DC59D0UL, 0x7965291FUL, 0xCCD6FD43UL,
|
||||
0x41823979UL, 0x932BCDF6UL, 0xB657C34DUL, 0x4EDFD282UL,
|
||||
0x7AE5290CUL, 0x3CB9536BUL, 0x851E20FEUL, 0x9833557EUL,
|
||||
0x13ECF0B0UL, 0xD3FFB372UL, 0x3F85C5C1UL, 0x0AEF7ED2UL
|
||||
},
|
||||
|
||||
{
|
||||
0x7EC90C04UL, 0x2C6E74B9UL, 0x9B0E66DFUL, 0xA6337911UL,
|
||||
0xB86A7FFFUL, 0x1DD358F5UL, 0x44DD9D44UL, 0x1731167FUL,
|
||||
0x08FBF1FAUL, 0xE7F511CCUL, 0xD2051B00UL, 0x735ABA00UL,
|
||||
0x2AB722D8UL, 0x386381CBUL, 0xACF6243AUL, 0x69BEFD7AUL,
|
||||
0xE6A2E77FUL, 0xF0C720CDUL, 0xC4494816UL, 0xCCF5C180UL,
|
||||
0x38851640UL, 0x15B0A848UL, 0xE68B18CBUL, 0x4CAADEFFUL,
|
||||
0x5F480A01UL, 0x0412B2AAUL, 0x259814FCUL, 0x41D0EFE2UL,
|
||||
0x4E40B48DUL, 0x248EB6FBUL, 0x8DBA1CFEUL, 0x41A99B02UL,
|
||||
0x1A550A04UL, 0xBA8F65CBUL, 0x7251F4E7UL, 0x95A51725UL,
|
||||
0xC106ECD7UL, 0x97A5980AUL, 0xC539B9AAUL, 0x4D79FE6AUL,
|
||||
0xF2F3F763UL, 0x68AF8040UL, 0xED0C9E56UL, 0x11B4958BUL,
|
||||
0xE1EB5A88UL, 0x8709E6B0UL, 0xD7E07156UL, 0x4E29FEA7UL,
|
||||
0x6366E52DUL, 0x02D1C000UL, 0xC4AC8E05UL, 0x9377F571UL,
|
||||
0x0C05372AUL, 0x578535F2UL, 0x2261BE02UL, 0xD642A0C9UL,
|
||||
0xDF13A280UL, 0x74B55BD2UL, 0x682199C0UL, 0xD421E5ECUL,
|
||||
0x53FB3CE8UL, 0xC8ADEDB3UL, 0x28A87FC9UL, 0x3D959981UL,
|
||||
0x5C1FF900UL, 0xFE38D399UL, 0x0C4EFF0BUL, 0x062407EAUL,
|
||||
0xAA2F4FB1UL, 0x4FB96976UL, 0x90C79505UL, 0xB0A8A774UL,
|
||||
0xEF55A1FFUL, 0xE59CA2C2UL, 0xA6B62D27UL, 0xE66A4263UL,
|
||||
0xDF65001FUL, 0x0EC50966UL, 0xDFDD55BCUL, 0x29DE0655UL,
|
||||
0x911E739AUL, 0x17AF8975UL, 0x32C7911CUL, 0x89F89468UL,
|
||||
0x0D01E980UL, 0x524755F4UL, 0x03B63CC9UL, 0x0CC844B2UL,
|
||||
0xBCF3F0AAUL, 0x87AC36E9UL, 0xE53A7426UL, 0x01B3D82BUL,
|
||||
0x1A9E7449UL, 0x64EE2D7EUL, 0xCDDBB1DAUL, 0x01C94910UL,
|
||||
0xB868BF80UL, 0x0D26F3FDUL, 0x9342EDE7UL, 0x04A5C284UL,
|
||||
0x636737B6UL, 0x50F5B616UL, 0xF24766E3UL, 0x8ECA36C1UL,
|
||||
0x136E05DBUL, 0xFEF18391UL, 0xFB887A37UL, 0xD6E7F7D4UL,
|
||||
0xC7FB7DC9UL, 0x3063FCDFUL, 0xB6F589DEUL, 0xEC2941DAUL,
|
||||
0x26E46695UL, 0xB7566419UL, 0xF654EFC5UL, 0xD08D58B7UL,
|
||||
0x48925401UL, 0xC1BACB7FUL, 0xE5FF550FUL, 0xB6083049UL,
|
||||
0x5BB5D0E8UL, 0x87D72E5AUL, 0xAB6A6EE1UL, 0x223A66CEUL,
|
||||
0xC62BF3CDUL, 0x9E0885F9UL, 0x68CB3E47UL, 0x086C010FUL,
|
||||
0xA21DE820UL, 0xD18B69DEUL, 0xF3F65777UL, 0xFA02C3F6UL,
|
||||
0x407EDAC3UL, 0xCBB3D550UL, 0x1793084DUL, 0xB0D70EBAUL,
|
||||
0x0AB378D5UL, 0xD951FB0CUL, 0xDED7DA56UL, 0x4124BBE4UL,
|
||||
0x94CA0B56UL, 0x0F5755D1UL, 0xE0E1E56EUL, 0x6184B5BEUL,
|
||||
0x580A249FUL, 0x94F74BC0UL, 0xE327888EUL, 0x9F7B5561UL,
|
||||
0xC3DC0280UL, 0x05687715UL, 0x646C6BD7UL, 0x44904DB3UL,
|
||||
0x66B4F0A3UL, 0xC0F1648AUL, 0x697ED5AFUL, 0x49E92FF6UL,
|
||||
0x309E374FUL, 0x2CB6356AUL, 0x85808573UL, 0x4991F840UL,
|
||||
0x76F0AE02UL, 0x083BE84DUL, 0x28421C9AUL, 0x44489406UL,
|
||||
0x736E4CB8UL, 0xC1092910UL, 0x8BC95FC6UL, 0x7D869CF4UL,
|
||||
0x134F616FUL, 0x2E77118DUL, 0xB31B2BE1UL, 0xAA90B472UL,
|
||||
0x3CA5D717UL, 0x7D161BBAUL, 0x9CAD9010UL, 0xAF462BA2UL,
|
||||
0x9FE459D2UL, 0x45D34559UL, 0xD9F2DA13UL, 0xDBC65487UL,
|
||||
0xF3E4F94EUL, 0x176D486FUL, 0x097C13EAUL, 0x631DA5C7UL,
|
||||
0x445F7382UL, 0x175683F4UL, 0xCDC66A97UL, 0x70BE0288UL,
|
||||
0xB3CDCF72UL, 0x6E5DD2F3UL, 0x20936079UL, 0x459B80A5UL,
|
||||
0xBE60E2DBUL, 0xA9C23101UL, 0xEBA5315CUL, 0x224E42F2UL,
|
||||
0x1C5C1572UL, 0xF6721B2CUL, 0x1AD2FFF3UL, 0x8C25404EUL,
|
||||
0x324ED72FUL, 0x4067B7FDUL, 0x0523138EUL, 0x5CA3BC78UL,
|
||||
0xDC0FD66EUL, 0x75922283UL, 0x784D6B17UL, 0x58EBB16EUL,
|
||||
0x44094F85UL, 0x3F481D87UL, 0xFCFEAE7BUL, 0x77B5FF76UL,
|
||||
0x8C2302BFUL, 0xAAF47556UL, 0x5F46B02AUL, 0x2B092801UL,
|
||||
0x3D38F5F7UL, 0x0CA81F36UL, 0x52AF4A8AUL, 0x66D5E7C0UL,
|
||||
0xDF3B0874UL, 0x95055110UL, 0x1B5AD7A8UL, 0xF61ED5ADUL,
|
||||
0x6CF6E479UL, 0x20758184UL, 0xD0CEFA65UL, 0x88F7BE58UL,
|
||||
0x4A046826UL, 0x0FF6F8F3UL, 0xA09C7F70UL, 0x5346ABA0UL,
|
||||
0x5CE96C28UL, 0xE176EDA3UL, 0x6BAC307FUL, 0x376829D2UL,
|
||||
0x85360FA9UL, 0x17E3FE2AUL, 0x24B79767UL, 0xF5A96B20UL,
|
||||
0xD6CD2595UL, 0x68FF1EBFUL, 0x7555442CUL, 0xF19F06BEUL,
|
||||
0xF9E0659AUL, 0xEEB9491DUL, 0x34010718UL, 0xBB30CAB8UL,
|
||||
0xE822FE15UL, 0x88570983UL, 0x750E6249UL, 0xDA627E55UL,
|
||||
0x5E76FFA8UL, 0xB1534546UL, 0x6D47DE08UL, 0xEFE9E7D4UL
|
||||
},
|
||||
|
||||
{
|
||||
0xF6FA8F9DUL, 0x2CAC6CE1UL, 0x4CA34867UL, 0xE2337F7CUL,
|
||||
0x95DB08E7UL, 0x016843B4UL, 0xECED5CBCUL, 0x325553ACUL,
|
||||
0xBF9F0960UL, 0xDFA1E2EDUL, 0x83F0579DUL, 0x63ED86B9UL,
|
||||
0x1AB6A6B8UL, 0xDE5EBE39UL, 0xF38FF732UL, 0x8989B138UL,
|
||||
0x33F14961UL, 0xC01937BDUL, 0xF506C6DAUL, 0xE4625E7EUL,
|
||||
0xA308EA99UL, 0x4E23E33CUL, 0x79CBD7CCUL, 0x48A14367UL,
|
||||
0xA3149619UL, 0xFEC94BD5UL, 0xA114174AUL, 0xEAA01866UL,
|
||||
0xA084DB2DUL, 0x09A8486FUL, 0xA888614AUL, 0x2900AF98UL,
|
||||
0x01665991UL, 0xE1992863UL, 0xC8F30C60UL, 0x2E78EF3CUL,
|
||||
0xD0D51932UL, 0xCF0FEC14UL, 0xF7CA07D2UL, 0xD0A82072UL,
|
||||
0xFD41197EUL, 0x9305A6B0UL, 0xE86BE3DAUL, 0x74BED3CDUL,
|
||||
0x372DA53CUL, 0x4C7F4448UL, 0xDAB5D440UL, 0x6DBA0EC3UL,
|
||||
0x083919A7UL, 0x9FBAEED9UL, 0x49DBCFB0UL, 0x4E670C53UL,
|
||||
0x5C3D9C01UL, 0x64BDB941UL, 0x2C0E636AUL, 0xBA7DD9CDUL,
|
||||
0xEA6F7388UL, 0xE70BC762UL, 0x35F29ADBUL, 0x5C4CDD8DUL,
|
||||
0xF0D48D8CUL, 0xB88153E2UL, 0x08A19866UL, 0x1AE2EAC8UL,
|
||||
0x284CAF89UL, 0xAA928223UL, 0x9334BE53UL, 0x3B3A21BFUL,
|
||||
0x16434BE3UL, 0x9AEA3906UL, 0xEFE8C36EUL, 0xF890CDD9UL,
|
||||
0x80226DAEUL, 0xC340A4A3UL, 0xDF7E9C09UL, 0xA694A807UL,
|
||||
0x5B7C5ECCUL, 0x221DB3A6UL, 0x9A69A02FUL, 0x68818A54UL,
|
||||
0xCEB2296FUL, 0x53C0843AUL, 0xFE893655UL, 0x25BFE68AUL,
|
||||
0xB4628ABCUL, 0xCF222EBFUL, 0x25AC6F48UL, 0xA9A99387UL,
|
||||
0x53BDDB65UL, 0xE76FFBE7UL, 0xE967FD78UL, 0x0BA93563UL,
|
||||
0x8E342BC1UL, 0xE8A11BE9UL, 0x4980740DUL, 0xC8087DFCUL,
|
||||
0x8DE4BF99UL, 0xA11101A0UL, 0x7FD37975UL, 0xDA5A26C0UL,
|
||||
0xE81F994FUL, 0x9528CD89UL, 0xFD339FEDUL, 0xB87834BFUL,
|
||||
0x5F04456DUL, 0x22258698UL, 0xC9C4C83BUL, 0x2DC156BEUL,
|
||||
0x4F628DAAUL, 0x57F55EC5UL, 0xE2220ABEUL, 0xD2916EBFUL,
|
||||
0x4EC75B95UL, 0x24F2C3C0UL, 0x42D15D99UL, 0xCD0D7FA0UL,
|
||||
0x7B6E27FFUL, 0xA8DC8AF0UL, 0x7345C106UL, 0xF41E232FUL,
|
||||
0x35162386UL, 0xE6EA8926UL, 0x3333B094UL, 0x157EC6F2UL,
|
||||
0x372B74AFUL, 0x692573E4UL, 0xE9A9D848UL, 0xF3160289UL,
|
||||
0x3A62EF1DUL, 0xA787E238UL, 0xF3A5F676UL, 0x74364853UL,
|
||||
0x20951063UL, 0x4576698DUL, 0xB6FAD407UL, 0x592AF950UL,
|
||||
0x36F73523UL, 0x4CFB6E87UL, 0x7DA4CEC0UL, 0x6C152DAAUL,
|
||||
0xCB0396A8UL, 0xC50DFE5DUL, 0xFCD707ABUL, 0x0921C42FUL,
|
||||
0x89DFF0BBUL, 0x5FE2BE78UL, 0x448F4F33UL, 0x754613C9UL,
|
||||
0x2B05D08DUL, 0x48B9D585UL, 0xDC049441UL, 0xC8098F9BUL,
|
||||
0x7DEDE786UL, 0xC39A3373UL, 0x42410005UL, 0x6A091751UL,
|
||||
0x0EF3C8A6UL, 0x890072D6UL, 0x28207682UL, 0xA9A9F7BEUL,
|
||||
0xBF32679DUL, 0xD45B5B75UL, 0xB353FD00UL, 0xCBB0E358UL,
|
||||
0x830F220AUL, 0x1F8FB214UL, 0xD372CF08UL, 0xCC3C4A13UL,
|
||||
0x8CF63166UL, 0x061C87BEUL, 0x88C98F88UL, 0x6062E397UL,
|
||||
0x47CF8E7AUL, 0xB6C85283UL, 0x3CC2ACFBUL, 0x3FC06976UL,
|
||||
0x4E8F0252UL, 0x64D8314DUL, 0xDA3870E3UL, 0x1E665459UL,
|
||||
0xC10908F0UL, 0x513021A5UL, 0x6C5B68B7UL, 0x822F8AA0UL,
|
||||
0x3007CD3EUL, 0x74719EEFUL, 0xDC872681UL, 0x073340D4UL,
|
||||
0x7E432FD9UL, 0x0C5EC241UL, 0x8809286CUL, 0xF592D891UL,
|
||||
0x08A930F6UL, 0x957EF305UL, 0xB7FBFFBDUL, 0xC266E96FUL,
|
||||
0x6FE4AC98UL, 0xB173ECC0UL, 0xBC60B42AUL, 0x953498DAUL,
|
||||
0xFBA1AE12UL, 0x2D4BD736UL, 0x0F25FAABUL, 0xA4F3FCEBUL,
|
||||
0xE2969123UL, 0x257F0C3DUL, 0x9348AF49UL, 0x361400BCUL,
|
||||
0xE8816F4AUL, 0x3814F200UL, 0xA3F94043UL, 0x9C7A54C2UL,
|
||||
0xBC704F57UL, 0xDA41E7F9UL, 0xC25AD33AUL, 0x54F4A084UL,
|
||||
0xB17F5505UL, 0x59357CBEUL, 0xEDBD15C8UL, 0x7F97C5ABUL,
|
||||
0xBA5AC7B5UL, 0xB6F6DEAFUL, 0x3A479C3AUL, 0x5302DA25UL,
|
||||
0x653D7E6AUL, 0x54268D49UL, 0x51A477EAUL, 0x5017D55BUL,
|
||||
0xD7D25D88UL, 0x44136C76UL, 0x0404A8C8UL, 0xB8E5A121UL,
|
||||
0xB81A928AUL, 0x60ED5869UL, 0x97C55B96UL, 0xEAEC991BUL,
|
||||
0x29935913UL, 0x01FDB7F1UL, 0x088E8DFAUL, 0x9AB6F6F5UL,
|
||||
0x3B4CBF9FUL, 0x4A5DE3ABUL, 0xE6051D35UL, 0xA0E1D855UL,
|
||||
0xD36B4CF1UL, 0xF544EDEBUL, 0xB0E93524UL, 0xBEBB8FBDUL,
|
||||
0xA2D762CFUL, 0x49C92F54UL, 0x38B5F331UL, 0x7128A454UL,
|
||||
0x48392905UL, 0xA65B1DB8UL, 0x851C97BDUL, 0xD675CF2FUL
|
||||
},
|
||||
|
||||
{
|
||||
0x85E04019UL, 0x332BF567UL, 0x662DBFFFUL, 0xCFC65693UL,
|
||||
0x2A8D7F6FUL, 0xAB9BC912UL, 0xDE6008A1UL, 0x2028DA1FUL,
|
||||
0x0227BCE7UL, 0x4D642916UL, 0x18FAC300UL, 0x50F18B82UL,
|
||||
0x2CB2CB11UL, 0xB232E75CUL, 0x4B3695F2UL, 0xB28707DEUL,
|
||||
0xA05FBCF6UL, 0xCD4181E9UL, 0xE150210CUL, 0xE24EF1BDUL,
|
||||
0xB168C381UL, 0xFDE4E789UL, 0x5C79B0D8UL, 0x1E8BFD43UL,
|
||||
0x4D495001UL, 0x38BE4341UL, 0x913CEE1DUL, 0x92A79C3FUL,
|
||||
0x089766BEUL, 0xBAEEADF4UL, 0x1286BECFUL, 0xB6EACB19UL,
|
||||
0x2660C200UL, 0x7565BDE4UL, 0x64241F7AUL, 0x8248DCA9UL,
|
||||
0xC3B3AD66UL, 0x28136086UL, 0x0BD8DFA8UL, 0x356D1CF2UL,
|
||||
0x107789BEUL, 0xB3B2E9CEUL, 0x0502AA8FUL, 0x0BC0351EUL,
|
||||
0x166BF52AUL, 0xEB12FF82UL, 0xE3486911UL, 0xD34D7516UL,
|
||||
0x4E7B3AFFUL, 0x5F43671BUL, 0x9CF6E037UL, 0x4981AC83UL,
|
||||
0x334266CEUL, 0x8C9341B7UL, 0xD0D854C0UL, 0xCB3A6C88UL,
|
||||
0x47BC2829UL, 0x4725BA37UL, 0xA66AD22BUL, 0x7AD61F1EUL,
|
||||
0x0C5CBAFAUL, 0x4437F107UL, 0xB6E79962UL, 0x42D2D816UL,
|
||||
0x0A961288UL, 0xE1A5C06EUL, 0x13749E67UL, 0x72FC081AUL,
|
||||
0xB1D139F7UL, 0xF9583745UL, 0xCF19DF58UL, 0xBEC3F756UL,
|
||||
0xC06EBA30UL, 0x07211B24UL, 0x45C28829UL, 0xC95E317FUL,
|
||||
0xBC8EC511UL, 0x38BC46E9UL, 0xC6E6FA14UL, 0xBAE8584AUL,
|
||||
0xAD4EBC46UL, 0x468F508BUL, 0x7829435FUL, 0xF124183BUL,
|
||||
0x821DBA9FUL, 0xAFF60FF4UL, 0xEA2C4E6DUL, 0x16E39264UL,
|
||||
0x92544A8BUL, 0x009B4FC3UL, 0xABA68CEDUL, 0x9AC96F78UL,
|
||||
0x06A5B79AUL, 0xB2856E6EUL, 0x1AEC3CA9UL, 0xBE838688UL,
|
||||
0x0E0804E9UL, 0x55F1BE56UL, 0xE7E5363BUL, 0xB3A1F25DUL,
|
||||
0xF7DEBB85UL, 0x61FE033CUL, 0x16746233UL, 0x3C034C28UL,
|
||||
0xDA6D0C74UL, 0x79AAC56CUL, 0x3CE4E1ADUL, 0x51F0C802UL,
|
||||
0x98F8F35AUL, 0x1626A49FUL, 0xEED82B29UL, 0x1D382FE3UL,
|
||||
0x0C4FB99AUL, 0xBB325778UL, 0x3EC6D97BUL, 0x6E77A6A9UL,
|
||||
0xCB658B5CUL, 0xD45230C7UL, 0x2BD1408BUL, 0x60C03EB7UL,
|
||||
0xB9068D78UL, 0xA33754F4UL, 0xF430C87DUL, 0xC8A71302UL,
|
||||
0xB96D8C32UL, 0xEBD4E7BEUL, 0xBE8B9D2DUL, 0x7979FB06UL,
|
||||
0xE7225308UL, 0x8B75CF77UL, 0x11EF8DA4UL, 0xE083C858UL,
|
||||
0x8D6B786FUL, 0x5A6317A6UL, 0xFA5CF7A0UL, 0x5DDA0033UL,
|
||||
0xF28EBFB0UL, 0xF5B9C310UL, 0xA0EAC280UL, 0x08B9767AUL,
|
||||
0xA3D9D2B0UL, 0x79D34217UL, 0x021A718DUL, 0x9AC6336AUL,
|
||||
0x2711FD60UL, 0x438050E3UL, 0x069908A8UL, 0x3D7FEDC4UL,
|
||||
0x826D2BEFUL, 0x4EEB8476UL, 0x488DCF25UL, 0x36C9D566UL,
|
||||
0x28E74E41UL, 0xC2610ACAUL, 0x3D49A9CFUL, 0xBAE3B9DFUL,
|
||||
0xB65F8DE6UL, 0x92AEAF64UL, 0x3AC7D5E6UL, 0x9EA80509UL,
|
||||
0xF22B017DUL, 0xA4173F70UL, 0xDD1E16C3UL, 0x15E0D7F9UL,
|
||||
0x50B1B887UL, 0x2B9F4FD5UL, 0x625ABA82UL, 0x6A017962UL,
|
||||
0x2EC01B9CUL, 0x15488AA9UL, 0xD716E740UL, 0x40055A2CUL,
|
||||
0x93D29A22UL, 0xE32DBF9AUL, 0x058745B9UL, 0x3453DC1EUL,
|
||||
0xD699296EUL, 0x496CFF6FUL, 0x1C9F4986UL, 0xDFE2ED07UL,
|
||||
0xB87242D1UL, 0x19DE7EAEUL, 0x053E561AUL, 0x15AD6F8CUL,
|
||||
0x66626C1CUL, 0x7154C24CUL, 0xEA082B2AUL, 0x93EB2939UL,
|
||||
0x17DCB0F0UL, 0x58D4F2AEUL, 0x9EA294FBUL, 0x52CF564CUL,
|
||||
0x9883FE66UL, 0x2EC40581UL, 0x763953C3UL, 0x01D6692EUL,
|
||||
0xD3A0C108UL, 0xA1E7160EUL, 0xE4F2DFA6UL, 0x693ED285UL,
|
||||
0x74904698UL, 0x4C2B0EDDUL, 0x4F757656UL, 0x5D393378UL,
|
||||
0xA132234FUL, 0x3D321C5DUL, 0xC3F5E194UL, 0x4B269301UL,
|
||||
0xC79F022FUL, 0x3C997E7EUL, 0x5E4F9504UL, 0x3FFAFBBDUL,
|
||||
0x76F7AD0EUL, 0x296693F4UL, 0x3D1FCE6FUL, 0xC61E45BEUL,
|
||||
0xD3B5AB34UL, 0xF72BF9B7UL, 0x1B0434C0UL, 0x4E72B567UL,
|
||||
0x5592A33DUL, 0xB5229301UL, 0xCFD2A87FUL, 0x60AEB767UL,
|
||||
0x1814386BUL, 0x30BCC33DUL, 0x38A0C07DUL, 0xFD1606F2UL,
|
||||
0xC363519BUL, 0x589DD390UL, 0x5479F8E6UL, 0x1CB8D647UL,
|
||||
0x97FD61A9UL, 0xEA7759F4UL, 0x2D57539DUL, 0x569A58CFUL,
|
||||
0xE84E63ADUL, 0x462E1B78UL, 0x6580F87EUL, 0xF3817914UL,
|
||||
0x91DA55F4UL, 0x40A230F3UL, 0xD1988F35UL, 0xB6E318D2UL,
|
||||
0x3FFA50BCUL, 0x3D40F021UL, 0xC3C0BDAEUL, 0x4958C24CUL,
|
||||
0x518F36B2UL, 0x84B1D370UL, 0x0FEDCE83UL, 0x878DDADAUL,
|
||||
0xF2A279C7UL, 0x94E01BE8UL, 0x90716F4BUL, 0x954B8AA3UL
|
||||
},
|
||||
|
||||
{
|
||||
0xE216300DUL, 0xBBDDFFFCUL, 0xA7EBDABDUL, 0x35648095UL,
|
||||
0x7789F8B7UL, 0xE6C1121BUL, 0x0E241600UL, 0x052CE8B5UL,
|
||||
0x11A9CFB0UL, 0xE5952F11UL, 0xECE7990AUL, 0x9386D174UL,
|
||||
0x2A42931CUL, 0x76E38111UL, 0xB12DEF3AUL, 0x37DDDDFCUL,
|
||||
0xDE9ADEB1UL, 0x0A0CC32CUL, 0xBE197029UL, 0x84A00940UL,
|
||||
0xBB243A0FUL, 0xB4D137CFUL, 0xB44E79F0UL, 0x049EEDFDUL,
|
||||
0x0B15A15DUL, 0x480D3168UL, 0x8BBBDE5AUL, 0x669DED42UL,
|
||||
0xC7ECE831UL, 0x3F8F95E7UL, 0x72DF191BUL, 0x7580330DUL,
|
||||
0x94074251UL, 0x5C7DCDFAUL, 0xABBE6D63UL, 0xAA402164UL,
|
||||
0xB301D40AUL, 0x02E7D1CAUL, 0x53571DAEUL, 0x7A3182A2UL,
|
||||
0x12A8DDECUL, 0xFDAA335DUL, 0x176F43E8UL, 0x71FB46D4UL,
|
||||
0x38129022UL, 0xCE949AD4UL, 0xB84769ADUL, 0x965BD862UL,
|
||||
0x82F3D055UL, 0x66FB9767UL, 0x15B80B4EUL, 0x1D5B47A0UL,
|
||||
0x4CFDE06FUL, 0xC28EC4B8UL, 0x57E8726EUL, 0x647A78FCUL,
|
||||
0x99865D44UL, 0x608BD593UL, 0x6C200E03UL, 0x39DC5FF6UL,
|
||||
0x5D0B00A3UL, 0xAE63AFF2UL, 0x7E8BD632UL, 0x70108C0CUL,
|
||||
0xBBD35049UL, 0x2998DF04UL, 0x980CF42AUL, 0x9B6DF491UL,
|
||||
0x9E7EDD53UL, 0x06918548UL, 0x58CB7E07UL, 0x3B74EF2EUL,
|
||||
0x522FFFB1UL, 0xD24708CCUL, 0x1C7E27CDUL, 0xA4EB215BUL,
|
||||
0x3CF1D2E2UL, 0x19B47A38UL, 0x424F7618UL, 0x35856039UL,
|
||||
0x9D17DEE7UL, 0x27EB35E6UL, 0xC9AFF67BUL, 0x36BAF5B8UL,
|
||||
0x09C467CDUL, 0xC18910B1UL, 0xE11DBF7BUL, 0x06CD1AF8UL,
|
||||
0x7170C608UL, 0x2D5E3354UL, 0xD4DE495AUL, 0x64C6D006UL,
|
||||
0xBCC0C62CUL, 0x3DD00DB3UL, 0x708F8F34UL, 0x77D51B42UL,
|
||||
0x264F620FUL, 0x24B8D2BFUL, 0x15C1B79EUL, 0x46A52564UL,
|
||||
0xF8D7E54EUL, 0x3E378160UL, 0x7895CDA5UL, 0x859C15A5UL,
|
||||
0xE6459788UL, 0xC37BC75FUL, 0xDB07BA0CUL, 0x0676A3ABUL,
|
||||
0x7F229B1EUL, 0x31842E7BUL, 0x24259FD7UL, 0xF8BEF472UL,
|
||||
0x835FFCB8UL, 0x6DF4C1F2UL, 0x96F5B195UL, 0xFD0AF0FCUL,
|
||||
0xB0FE134CUL, 0xE2506D3DUL, 0x4F9B12EAUL, 0xF215F225UL,
|
||||
0xA223736FUL, 0x9FB4C428UL, 0x25D04979UL, 0x34C713F8UL,
|
||||
0xC4618187UL, 0xEA7A6E98UL, 0x7CD16EFCUL, 0x1436876CUL,
|
||||
0xF1544107UL, 0xBEDEEE14UL, 0x56E9AF27UL, 0xA04AA441UL,
|
||||
0x3CF7C899UL, 0x92ECBAE6UL, 0xDD67016DUL, 0x151682EBUL,
|
||||
0xA842EEDFUL, 0xFDBA60B4UL, 0xF1907B75UL, 0x20E3030FUL,
|
||||
0x24D8C29EUL, 0xE139673BUL, 0xEFA63FB8UL, 0x71873054UL,
|
||||
0xB6F2CF3BUL, 0x9F326442UL, 0xCB15A4CCUL, 0xB01A4504UL,
|
||||
0xF1E47D8DUL, 0x844A1BE5UL, 0xBAE7DFDCUL, 0x42CBDA70UL,
|
||||
0xCD7DAE0AUL, 0x57E85B7AUL, 0xD53F5AF6UL, 0x20CF4D8CUL,
|
||||
0xCEA4D428UL, 0x79D130A4UL, 0x3486EBFBUL, 0x33D3CDDCUL,
|
||||
0x77853B53UL, 0x37EFFCB5UL, 0xC5068778UL, 0xE580B3E6UL,
|
||||
0x4E68B8F4UL, 0xC5C8B37EUL, 0x0D809EA2UL, 0x398FEB7CUL,
|
||||
0x132A4F94UL, 0x43B7950EUL, 0x2FEE7D1CUL, 0x223613BDUL,
|
||||
0xDD06CAA2UL, 0x37DF932BUL, 0xC4248289UL, 0xACF3EBC3UL,
|
||||
0x5715F6B7UL, 0xEF3478DDUL, 0xF267616FUL, 0xC148CBE4UL,
|
||||
0x9052815EUL, 0x5E410FABUL, 0xB48A2465UL, 0x2EDA7FA4UL,
|
||||
0xE87B40E4UL, 0xE98EA084UL, 0x5889E9E1UL, 0xEFD390FCUL,
|
||||
0xDD07D35BUL, 0xDB485694UL, 0x38D7E5B2UL, 0x57720101UL,
|
||||
0x730EDEBCUL, 0x5B643113UL, 0x94917E4FUL, 0x503C2FBAUL,
|
||||
0x646F1282UL, 0x7523D24AUL, 0xE0779695UL, 0xF9C17A8FUL,
|
||||
0x7A5B2121UL, 0xD187B896UL, 0x29263A4DUL, 0xBA510CDFUL,
|
||||
0x81F47C9FUL, 0xAD1163EDUL, 0xEA7B5965UL, 0x1A00726EUL,
|
||||
0x11403092UL, 0x00DA6D77UL, 0x4A0CDD61UL, 0xAD1F4603UL,
|
||||
0x605BDFB0UL, 0x9EEDC364UL, 0x22EBE6A8UL, 0xCEE7D28AUL,
|
||||
0xA0E736A0UL, 0x5564A6B9UL, 0x10853209UL, 0xC7EB8F37UL,
|
||||
0x2DE705CAUL, 0x8951570FUL, 0xDF09822BUL, 0xBD691A6CUL,
|
||||
0xAA12E4F2UL, 0x87451C0FUL, 0xE0F6A27AUL, 0x3ADA4819UL,
|
||||
0x4CF1764FUL, 0x0D771C2BUL, 0x67CDB156UL, 0x350D8384UL,
|
||||
0x5938FA0FUL, 0x42399EF3UL, 0x36997B07UL, 0x0E84093DUL,
|
||||
0x4AA93E61UL, 0x8360D87BUL, 0x1FA98B0CUL, 0x1149382CUL,
|
||||
0xE97625A5UL, 0x0614D1B7UL, 0x0E25244BUL, 0x0C768347UL,
|
||||
0x589E8D82UL, 0x0D2059D1UL, 0xA466BB1EUL, 0xF8DA0A82UL,
|
||||
0x04F19130UL, 0xBA6E4EC0UL, 0x99265164UL, 0x1EE7230DUL,
|
||||
0x50B2AD80UL, 0xEAEE6801UL, 0x8DB2A283UL, 0xEA8BF59EUL
|
||||
}};
|
||||
|
||||
/* CAST uses three different round functions */
|
||||
#define f1(l, r, km, kr) \
|
||||
t = rotlVariable(km + r, kr); \
|
||||
l ^= ((S[0][U8a(t)] ^ S[1][U8b(t)]) - \
|
||||
S[2][U8c(t)]) + S[3][U8d(t)];
|
||||
#define f2(l, r, km, kr) \
|
||||
t = rotlVariable(km ^ r, kr); \
|
||||
l ^= ((S[0][U8a(t)] - S[1][U8b(t)]) + \
|
||||
S[2][U8c(t)]) ^ S[3][U8d(t)];
|
||||
#define f3(l, r, km, kr) \
|
||||
t = rotlVariable(km - r, kr); \
|
||||
l ^= ((S[0][U8a(t)] + S[1][U8b(t)]) ^ \
|
||||
S[2][U8c(t)]) - S[3][U8d(t)];
|
||||
|
||||
#define F1(l, r, i, j) f1(l, r, K[i], K[i+j])
|
||||
#define F2(l, r, i, j) f2(l, r, K[i], K[i+j])
|
||||
#define F3(l, r, i, j) f3(l, r, K[i], K[i+j])
|
||||
|
||||
|
||||
void Cast5Encrypt (const byte *inBlock, byte *outBlock, CAST_KEY *key)
|
||||
{
|
||||
word32 l = BE32 (((word32 *)inBlock)[0]);
|
||||
word32 r = BE32 (((word32 *)inBlock)[1]);
|
||||
word32 *K = key->K;
|
||||
word32 t;
|
||||
|
||||
/* Do the work */
|
||||
F1(l, r, 0, 16);
|
||||
F2(r, l, 1, 16);
|
||||
F3(l, r, 2, 16);
|
||||
F1(r, l, 3, 16);
|
||||
F2(l, r, 4, 16);
|
||||
F3(r, l, 5, 16);
|
||||
F1(l, r, 6, 16);
|
||||
F2(r, l, 7, 16);
|
||||
F3(l, r, 8, 16);
|
||||
F1(r, l, 9, 16);
|
||||
F2(l, r, 10, 16);
|
||||
F3(r, l, 11, 16);
|
||||
F1(l, r, 12, 16);
|
||||
F2(r, l, 13, 16);
|
||||
F3(l, r, 14, 16);
|
||||
F1(r, l, 15, 16);
|
||||
|
||||
/* Put l,r into outblock */
|
||||
((word32 *)outBlock)[0] = BE32 (r);
|
||||
((word32 *)outBlock)[1] = BE32 (l);
|
||||
}
|
||||
|
||||
|
||||
void Cast5Decrypt (const byte *inBlock, byte *outBlock, CAST_KEY *key)
|
||||
{
|
||||
word32 r = BE32 (((word32 *)inBlock)[0]);
|
||||
word32 l = BE32 (((word32 *)inBlock)[1]);
|
||||
word32 *K = key->K;
|
||||
word32 t;
|
||||
|
||||
/* Only do full 16 rounds if key length > 80 bits */
|
||||
F1(r, l, 15, 16);
|
||||
F3(l, r, 14, 16);
|
||||
F2(r, l, 13, 16);
|
||||
F1(l, r, 12, 16);
|
||||
F3(r, l, 11, 16);
|
||||
F2(l, r, 10, 16);
|
||||
F1(r, l, 9, 16);
|
||||
F3(l, r, 8, 16);
|
||||
F2(r, l, 7, 16);
|
||||
F1(l, r, 6, 16);
|
||||
F3(r, l, 5, 16);
|
||||
F2(l, r, 4, 16);
|
||||
F1(r, l, 3, 16);
|
||||
F3(l, r, 2, 16);
|
||||
F2(r, l, 1, 16);
|
||||
F1(l, r, 0, 16);
|
||||
/* Put l,r into outblock */
|
||||
((word32 *)outBlock)[0] = BE32 (l);
|
||||
((word32 *)outBlock)[1] = BE32 (r);
|
||||
/* Wipe clean */
|
||||
t = l = r = 0;
|
||||
}
|
||||
|
||||
void Cast5SetKey (CAST_KEY *key, unsigned int keylength, const byte *userKey)
|
||||
{
|
||||
unsigned int i;
|
||||
word32 *K = key->K;
|
||||
word32 X[4], Z[4];
|
||||
|
||||
X[0] = BE32 (((word32 *)userKey)[0]);
|
||||
X[1] = BE32 (((word32 *)userKey)[1]);
|
||||
X[2] = BE32 (((word32 *)userKey)[2]);
|
||||
X[3] = BE32 (((word32 *)userKey)[3]);
|
||||
|
||||
#define x(i) GETBYTE(X[i/4], 3-i%4)
|
||||
#define z(i) GETBYTE(Z[i/4], 3-i%4)
|
||||
|
||||
for (i=0; i<=16; i+=16)
|
||||
{
|
||||
// this part is copied directly from RFC 2144 (with some search and replace) by Wei Dai
|
||||
Z[0] = X[0] ^ S[4][x(0xD)] ^ S[5][x(0xF)] ^ S[6][x(0xC)] ^ S[7][x(0xE)] ^ S[6][x(0x8)];
|
||||
Z[1] = X[2] ^ S[4][z(0x0)] ^ S[5][z(0x2)] ^ S[6][z(0x1)] ^ S[7][z(0x3)] ^ S[7][x(0xA)];
|
||||
Z[2] = X[3] ^ S[4][z(0x7)] ^ S[5][z(0x6)] ^ S[6][z(0x5)] ^ S[7][z(0x4)] ^ S[4][x(0x9)];
|
||||
Z[3] = X[1] ^ S[4][z(0xA)] ^ S[5][z(0x9)] ^ S[6][z(0xB)] ^ S[7][z(0x8)] ^ S[5][x(0xB)];
|
||||
K[i+0] = S[4][z(0x8)] ^ S[5][z(0x9)] ^ S[6][z(0x7)] ^ S[7][z(0x6)] ^ S[4][z(0x2)];
|
||||
K[i+1] = S[4][z(0xA)] ^ S[5][z(0xB)] ^ S[6][z(0x5)] ^ S[7][z(0x4)] ^ S[5][z(0x6)];
|
||||
K[i+2] = S[4][z(0xC)] ^ S[5][z(0xD)] ^ S[6][z(0x3)] ^ S[7][z(0x2)] ^ S[6][z(0x9)];
|
||||
K[i+3] = S[4][z(0xE)] ^ S[5][z(0xF)] ^ S[6][z(0x1)] ^ S[7][z(0x0)] ^ S[7][z(0xC)];
|
||||
X[0] = Z[2] ^ S[4][z(0x5)] ^ S[5][z(0x7)] ^ S[6][z(0x4)] ^ S[7][z(0x6)] ^ S[6][z(0x0)];
|
||||
X[1] = Z[0] ^ S[4][x(0x0)] ^ S[5][x(0x2)] ^ S[6][x(0x1)] ^ S[7][x(0x3)] ^ S[7][z(0x2)];
|
||||
X[2] = Z[1] ^ S[4][x(0x7)] ^ S[5][x(0x6)] ^ S[6][x(0x5)] ^ S[7][x(0x4)] ^ S[4][z(0x1)];
|
||||
X[3] = Z[3] ^ S[4][x(0xA)] ^ S[5][x(0x9)] ^ S[6][x(0xB)] ^ S[7][x(0x8)] ^ S[5][z(0x3)];
|
||||
K[i+4] = S[4][x(0x3)] ^ S[5][x(0x2)] ^ S[6][x(0xC)] ^ S[7][x(0xD)] ^ S[4][x(0x8)];
|
||||
K[i+5] = S[4][x(0x1)] ^ S[5][x(0x0)] ^ S[6][x(0xE)] ^ S[7][x(0xF)] ^ S[5][x(0xD)];
|
||||
K[i+6] = S[4][x(0x7)] ^ S[5][x(0x6)] ^ S[6][x(0x8)] ^ S[7][x(0x9)] ^ S[6][x(0x3)];
|
||||
K[i+7] = S[4][x(0x5)] ^ S[5][x(0x4)] ^ S[6][x(0xA)] ^ S[7][x(0xB)] ^ S[7][x(0x7)];
|
||||
Z[0] = X[0] ^ S[4][x(0xD)] ^ S[5][x(0xF)] ^ S[6][x(0xC)] ^ S[7][x(0xE)] ^ S[6][x(0x8)];
|
||||
Z[1] = X[2] ^ S[4][z(0x0)] ^ S[5][z(0x2)] ^ S[6][z(0x1)] ^ S[7][z(0x3)] ^ S[7][x(0xA)];
|
||||
Z[2] = X[3] ^ S[4][z(0x7)] ^ S[5][z(0x6)] ^ S[6][z(0x5)] ^ S[7][z(0x4)] ^ S[4][x(0x9)];
|
||||
Z[3] = X[1] ^ S[4][z(0xA)] ^ S[5][z(0x9)] ^ S[6][z(0xB)] ^ S[7][z(0x8)] ^ S[5][x(0xB)];
|
||||
K[i+8] = S[4][z(0x3)] ^ S[5][z(0x2)] ^ S[6][z(0xC)] ^ S[7][z(0xD)] ^ S[4][z(0x9)];
|
||||
K[i+9] = S[4][z(0x1)] ^ S[5][z(0x0)] ^ S[6][z(0xE)] ^ S[7][z(0xF)] ^ S[5][z(0xC)];
|
||||
K[i+10] = S[4][z(0x7)] ^ S[5][z(0x6)] ^ S[6][z(0x8)] ^ S[7][z(0x9)] ^ S[6][z(0x2)];
|
||||
K[i+11] = S[4][z(0x5)] ^ S[5][z(0x4)] ^ S[6][z(0xA)] ^ S[7][z(0xB)] ^ S[7][z(0x6)];
|
||||
X[0] = Z[2] ^ S[4][z(0x5)] ^ S[5][z(0x7)] ^ S[6][z(0x4)] ^ S[7][z(0x6)] ^ S[6][z(0x0)];
|
||||
X[1] = Z[0] ^ S[4][x(0x0)] ^ S[5][x(0x2)] ^ S[6][x(0x1)] ^ S[7][x(0x3)] ^ S[7][z(0x2)];
|
||||
X[2] = Z[1] ^ S[4][x(0x7)] ^ S[5][x(0x6)] ^ S[6][x(0x5)] ^ S[7][x(0x4)] ^ S[4][z(0x1)];
|
||||
X[3] = Z[3] ^ S[4][x(0xA)] ^ S[5][x(0x9)] ^ S[6][x(0xB)] ^ S[7][x(0x8)] ^ S[5][z(0x3)];
|
||||
K[i+12] = S[4][x(0x8)] ^ S[5][x(0x9)] ^ S[6][x(0x7)] ^ S[7][x(0x6)] ^ S[4][x(0x3)];
|
||||
K[i+13] = S[4][x(0xA)] ^ S[5][x(0xB)] ^ S[6][x(0x5)] ^ S[7][x(0x4)] ^ S[5][x(0x7)];
|
||||
K[i+14] = S[4][x(0xC)] ^ S[5][x(0xD)] ^ S[6][x(0x3)] ^ S[7][x(0x2)] ^ S[6][x(0x8)];
|
||||
K[i+15] = S[4][x(0xE)] ^ S[5][x(0xF)] ^ S[6][x(0x1)] ^ S[7][x(0x0)] ^ S[7][x(0xD)];
|
||||
}
|
||||
|
||||
for (i=16; i<32; i++)
|
||||
K[i] &= 0x1f;
|
||||
}
|
||||
24
src/Crypto/Cast.h
Normal file
24
src/Crypto/Cast.h
Normal file
@@ -0,0 +1,24 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
#ifndef HEADER_CAST_H
|
||||
#define HEADER_CAST_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct CAST_KEY_STRUCT
|
||||
{
|
||||
unsigned __int32 K[32];
|
||||
} CAST_KEY;
|
||||
|
||||
void Cast5Decrypt (const byte *inBlock, byte *outBlock, CAST_KEY *key);
|
||||
void Cast5Encrypt (const byte *inBlock, byte *outBlock, CAST_KEY *key);
|
||||
void Cast5SetKey (CAST_KEY *key, unsigned int keylength, const byte *userKey);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
318
src/Crypto/Crypto.vcproj
Normal file
318
src/Crypto/Crypto.vcproj
Normal file
@@ -0,0 +1,318 @@
|
||||
<?xml version="1.0" encoding="Windows-1252"?>
|
||||
<VisualStudioProject
|
||||
ProjectType="Visual C++"
|
||||
Version="9.00"
|
||||
Name="Crypto"
|
||||
ProjectGUID="{993245CF-6B70-47EE-91BB-39F8FC6DC0E7}"
|
||||
RootNamespace="Crypto"
|
||||
Keyword="Win32Proj"
|
||||
TargetFrameworkVersion="131072"
|
||||
>
|
||||
<Platforms>
|
||||
<Platform
|
||||
Name="Win32"
|
||||
/>
|
||||
</Platforms>
|
||||
<ToolFiles>
|
||||
</ToolFiles>
|
||||
<Configurations>
|
||||
<Configuration
|
||||
Name="Debug|Win32"
|
||||
OutputDirectory="Debug"
|
||||
IntermediateDirectory="Debug"
|
||||
ConfigurationType="4"
|
||||
InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
|
||||
CharacterSet="2"
|
||||
>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
Optimization="0"
|
||||
AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
|
||||
PreprocessorDefinitions="WIN32;DEBUG;_DEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
|
||||
MinimalRebuild="true"
|
||||
BasicRuntimeChecks="0"
|
||||
RuntimeLibrary="1"
|
||||
BufferSecurityCheck="false"
|
||||
UsePrecompiledHeader="0"
|
||||
WarningLevel="4"
|
||||
DebugInformationFormat="3"
|
||||
DisableSpecificWarnings="4100;4127;4201"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCManagedResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
OutputFile="$(OutDir)/Crypto.lib"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCALinkTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXDCMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCBscMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCFxCopTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
Name="Release|Win32"
|
||||
OutputDirectory="Release"
|
||||
IntermediateDirectory="Release"
|
||||
ConfigurationType="4"
|
||||
InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
|
||||
CharacterSet="2"
|
||||
>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
Optimization="2"
|
||||
AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
|
||||
PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
|
||||
RuntimeLibrary="0"
|
||||
BufferSecurityCheck="true"
|
||||
UsePrecompiledHeader="0"
|
||||
AssemblerOutput="2"
|
||||
AssemblerListingLocation="$(IntDir)/"
|
||||
WarningLevel="4"
|
||||
Detect64BitPortabilityProblems="false"
|
||||
DebugInformationFormat="0"
|
||||
DisableSpecificWarnings="4100;4127;4201"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCManagedResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
OutputFile="$(OutDir)/Crypto.lib"
|
||||
AdditionalLibraryDirectories="$(TargetDir)"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCALinkTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCXDCMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCBscMakeTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCFxCopTool"
|
||||
/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
/>
|
||||
</Configuration>
|
||||
</Configurations>
|
||||
<References>
|
||||
</References>
|
||||
<Files>
|
||||
<Filter
|
||||
Name="Source Files"
|
||||
Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx"
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
|
||||
>
|
||||
<File
|
||||
RelativePath=".\Aes_hw_cpu.asm"
|
||||
>
|
||||
<FileConfiguration
|
||||
Name="Debug|Win32"
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
|
||||
Outputs="$(TargetDir)\$(InputName).obj"
|
||||
/>
|
||||
</FileConfiguration>
|
||||
<FileConfiguration
|
||||
Name="Release|Win32"
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
|
||||
Outputs="$(TargetDir)\$(InputName).obj"
|
||||
/>
|
||||
</FileConfiguration>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aes_x86.asm"
|
||||
>
|
||||
<FileConfiguration
|
||||
Name="Debug|Win32"
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
|
||||
Outputs="$(TargetDir)\$(InputName).obj"
|
||||
/>
|
||||
</FileConfiguration>
|
||||
<FileConfiguration
|
||||
Name="Release|Win32"
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
|
||||
Outputs="$(TargetDir)\$(InputName).obj"
|
||||
/>
|
||||
</FileConfiguration>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aeskey.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aestab.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Blowfish.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Cast.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Des.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Rmd160.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Serpent.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Sha1.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Sha2.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Twofish.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Whirlpool.c"
|
||||
>
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Header Files"
|
||||
Filter="h;hpp;hxx;hm;inl;inc;xsd"
|
||||
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
|
||||
>
|
||||
<File
|
||||
RelativePath=".\Aes.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aes_hw_cpu.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aesopt.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Aestab.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Blowfish.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Cast.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Des.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Rmd160.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Serpent.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Sha1.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Sha2.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Twofish.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\Whirlpool.h"
|
||||
>
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Resource Files"
|
||||
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx"
|
||||
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
|
||||
>
|
||||
</Filter>
|
||||
</Files>
|
||||
<Globals>
|
||||
</Globals>
|
||||
</VisualStudioProject>
|
||||
406
src/Crypto/Des.c
Normal file
406
src/Crypto/Des.c
Normal file
@@ -0,0 +1,406 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
// des.cpp - modified by Wei Dai from Phil Karn's des.c
|
||||
// The original code and all modifications are in the public domain.
|
||||
|
||||
/*
|
||||
* This is a major rewrite of my old public domain DES code written
|
||||
* circa 1987, which in turn borrowed heavily from Jim Gillogly's 1977
|
||||
* public domain code. I pretty much kept my key scheduling code, but
|
||||
* the actual encrypt/decrypt routines are taken from from Richard
|
||||
* Outerbridge's DES code as printed in Schneier's "Applied Cryptography."
|
||||
*
|
||||
* This code is in the public domain. I would appreciate bug reports and
|
||||
* enhancements.
|
||||
*
|
||||
* Phil Karn KA9Q, karn@unix.ka9q.ampr.org, August 1994.
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#include <memory.h>
|
||||
#include "Common/Tcdefs.h"
|
||||
#include "Common/Endian.h"
|
||||
#include "Des.h"
|
||||
|
||||
#define word32 unsigned __int32
|
||||
#define byte unsigned __int8
|
||||
|
||||
static word32 rotlFixed (word32 x, unsigned int y)
|
||||
{
|
||||
return (word32)((x<<y) | (x>>(sizeof(word32)*8-y)));
|
||||
}
|
||||
|
||||
static word32 rotrFixed (word32 x, unsigned int y)
|
||||
{
|
||||
return (word32)((x>>y) | (x<<(sizeof(word32)*8-y)));
|
||||
}
|
||||
|
||||
|
||||
/* Tables defined in the Data Encryption Standard documents
|
||||
* Three of these tables, the initial permutation, the final
|
||||
* permutation and the expansion operator, are regular enough that
|
||||
* for speed, we hard-code them. They're here for reference only.
|
||||
* Also, the S and P boxes are used by a separate program, gensp.c,
|
||||
* to build the combined SP box, Spbox[]. They're also here just
|
||||
* for reference.
|
||||
*/
|
||||
#ifdef notdef
|
||||
/* initial permutation IP */
|
||||
static byte ip[] = {
|
||||
58, 50, 42, 34, 26, 18, 10, 2,
|
||||
60, 52, 44, 36, 28, 20, 12, 4,
|
||||
62, 54, 46, 38, 30, 22, 14, 6,
|
||||
64, 56, 48, 40, 32, 24, 16, 8,
|
||||
57, 49, 41, 33, 25, 17, 9, 1,
|
||||
59, 51, 43, 35, 27, 19, 11, 3,
|
||||
61, 53, 45, 37, 29, 21, 13, 5,
|
||||
63, 55, 47, 39, 31, 23, 15, 7
|
||||
};
|
||||
|
||||
/* final permutation IP^-1 */
|
||||
static byte fp[] = {
|
||||
40, 8, 48, 16, 56, 24, 64, 32,
|
||||
39, 7, 47, 15, 55, 23, 63, 31,
|
||||
38, 6, 46, 14, 54, 22, 62, 30,
|
||||
37, 5, 45, 13, 53, 21, 61, 29,
|
||||
36, 4, 44, 12, 52, 20, 60, 28,
|
||||
35, 3, 43, 11, 51, 19, 59, 27,
|
||||
34, 2, 42, 10, 50, 18, 58, 26,
|
||||
33, 1, 41, 9, 49, 17, 57, 25
|
||||
};
|
||||
/* expansion operation matrix */
|
||||
static byte ei[] = {
|
||||
32, 1, 2, 3, 4, 5,
|
||||
4, 5, 6, 7, 8, 9,
|
||||
8, 9, 10, 11, 12, 13,
|
||||
12, 13, 14, 15, 16, 17,
|
||||
16, 17, 18, 19, 20, 21,
|
||||
20, 21, 22, 23, 24, 25,
|
||||
24, 25, 26, 27, 28, 29,
|
||||
28, 29, 30, 31, 32, 1
|
||||
};
|
||||
/* The (in)famous S-boxes */
|
||||
static byte sbox[8][64] = {
|
||||
/* S1 */
|
||||
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
|
||||
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
|
||||
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
|
||||
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
|
||||
|
||||
/* S2 */
|
||||
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
|
||||
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
|
||||
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
|
||||
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
|
||||
|
||||
/* S3 */
|
||||
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
|
||||
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
|
||||
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
|
||||
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
|
||||
|
||||
/* S4 */
|
||||
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
|
||||
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
|
||||
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
|
||||
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
|
||||
|
||||
/* S5 */
|
||||
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
|
||||
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
|
||||
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
|
||||
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
|
||||
|
||||
/* S6 */
|
||||
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
|
||||
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
|
||||
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
|
||||
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
|
||||
|
||||
/* S7 */
|
||||
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
|
||||
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
|
||||
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
|
||||
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
|
||||
|
||||
/* S8 */
|
||||
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
|
||||
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
|
||||
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
|
||||
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
|
||||
};
|
||||
|
||||
/* 32-bit permutation function P used on the output of the S-boxes */
|
||||
static byte p32i[] = {
|
||||
16, 7, 20, 21,
|
||||
29, 12, 28, 17,
|
||||
1, 15, 23, 26,
|
||||
5, 18, 31, 10,
|
||||
2, 8, 24, 14,
|
||||
32, 27, 3, 9,
|
||||
19, 13, 30, 6,
|
||||
22, 11, 4, 25
|
||||
};
|
||||
#endif
|
||||
|
||||
/* permuted choice table (key) */
|
||||
static const byte pc1[] = {
|
||||
57, 49, 41, 33, 25, 17, 9,
|
||||
1, 58, 50, 42, 34, 26, 18,
|
||||
10, 2, 59, 51, 43, 35, 27,
|
||||
19, 11, 3, 60, 52, 44, 36,
|
||||
|
||||
63, 55, 47, 39, 31, 23, 15,
|
||||
7, 62, 54, 46, 38, 30, 22,
|
||||
14, 6, 61, 53, 45, 37, 29,
|
||||
21, 13, 5, 28, 20, 12, 4
|
||||
};
|
||||
|
||||
/* number left rotations of pc1 */
|
||||
static const byte totrot[] = {
|
||||
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
|
||||
};
|
||||
|
||||
/* permuted choice key (table) */
|
||||
static const byte pc2[] = {
|
||||
14, 17, 11, 24, 1, 5,
|
||||
3, 28, 15, 6, 21, 10,
|
||||
23, 19, 12, 4, 26, 8,
|
||||
16, 7, 27, 20, 13, 2,
|
||||
41, 52, 31, 37, 47, 55,
|
||||
30, 40, 51, 45, 33, 48,
|
||||
44, 49, 39, 56, 34, 53,
|
||||
46, 42, 50, 36, 29, 32
|
||||
};
|
||||
|
||||
/* End of DES-defined tables */
|
||||
|
||||
/* bit 0 is left-most in byte */
|
||||
static const int bytebit[] = {
|
||||
0200,0100,040,020,010,04,02,01
|
||||
};
|
||||
|
||||
static const word32 Spbox[8][64] = {
|
||||
{
|
||||
0x01010400,0x00000000,0x00010000,0x01010404, 0x01010004,0x00010404,0x00000004,0x00010000,
|
||||
0x00000400,0x01010400,0x01010404,0x00000400, 0x01000404,0x01010004,0x01000000,0x00000004,
|
||||
0x00000404,0x01000400,0x01000400,0x00010400, 0x00010400,0x01010000,0x01010000,0x01000404,
|
||||
0x00010004,0x01000004,0x01000004,0x00010004, 0x00000000,0x00000404,0x00010404,0x01000000,
|
||||
0x00010000,0x01010404,0x00000004,0x01010000, 0x01010400,0x01000000,0x01000000,0x00000400,
|
||||
0x01010004,0x00010000,0x00010400,0x01000004, 0x00000400,0x00000004,0x01000404,0x00010404,
|
||||
0x01010404,0x00010004,0x01010000,0x01000404, 0x01000004,0x00000404,0x00010404,0x01010400,
|
||||
0x00000404,0x01000400,0x01000400,0x00000000, 0x00010004,0x00010400,0x00000000,0x01010004},
|
||||
{
|
||||
0x80108020,0x80008000,0x00008000,0x00108020, 0x00100000,0x00000020,0x80100020,0x80008020,
|
||||
0x80000020,0x80108020,0x80108000,0x80000000, 0x80008000,0x00100000,0x00000020,0x80100020,
|
||||
0x00108000,0x00100020,0x80008020,0x00000000, 0x80000000,0x00008000,0x00108020,0x80100000,
|
||||
0x00100020,0x80000020,0x00000000,0x00108000, 0x00008020,0x80108000,0x80100000,0x00008020,
|
||||
0x00000000,0x00108020,0x80100020,0x00100000, 0x80008020,0x80100000,0x80108000,0x00008000,
|
||||
0x80100000,0x80008000,0x00000020,0x80108020, 0x00108020,0x00000020,0x00008000,0x80000000,
|
||||
0x00008020,0x80108000,0x00100000,0x80000020, 0x00100020,0x80008020,0x80000020,0x00100020,
|
||||
0x00108000,0x00000000,0x80008000,0x00008020, 0x80000000,0x80100020,0x80108020,0x00108000},
|
||||
{
|
||||
0x00000208,0x08020200,0x00000000,0x08020008, 0x08000200,0x00000000,0x00020208,0x08000200,
|
||||
0x00020008,0x08000008,0x08000008,0x00020000, 0x08020208,0x00020008,0x08020000,0x00000208,
|
||||
0x08000000,0x00000008,0x08020200,0x00000200, 0x00020200,0x08020000,0x08020008,0x00020208,
|
||||
0x08000208,0x00020200,0x00020000,0x08000208, 0x00000008,0x08020208,0x00000200,0x08000000,
|
||||
0x08020200,0x08000000,0x00020008,0x00000208, 0x00020000,0x08020200,0x08000200,0x00000000,
|
||||
0x00000200,0x00020008,0x08020208,0x08000200, 0x08000008,0x00000200,0x00000000,0x08020008,
|
||||
0x08000208,0x00020000,0x08000000,0x08020208, 0x00000008,0x00020208,0x00020200,0x08000008,
|
||||
0x08020000,0x08000208,0x00000208,0x08020000, 0x00020208,0x00000008,0x08020008,0x00020200},
|
||||
{
|
||||
0x00802001,0x00002081,0x00002081,0x00000080, 0x00802080,0x00800081,0x00800001,0x00002001,
|
||||
0x00000000,0x00802000,0x00802000,0x00802081, 0x00000081,0x00000000,0x00800080,0x00800001,
|
||||
0x00000001,0x00002000,0x00800000,0x00802001, 0x00000080,0x00800000,0x00002001,0x00002080,
|
||||
0x00800081,0x00000001,0x00002080,0x00800080, 0x00002000,0x00802080,0x00802081,0x00000081,
|
||||
0x00800080,0x00800001,0x00802000,0x00802081, 0x00000081,0x00000000,0x00000000,0x00802000,
|
||||
0x00002080,0x00800080,0x00800081,0x00000001, 0x00802001,0x00002081,0x00002081,0x00000080,
|
||||
0x00802081,0x00000081,0x00000001,0x00002000, 0x00800001,0x00002001,0x00802080,0x00800081,
|
||||
0x00002001,0x00002080,0x00800000,0x00802001, 0x00000080,0x00800000,0x00002000,0x00802080},
|
||||
{
|
||||
0x00000100,0x02080100,0x02080000,0x42000100, 0x00080000,0x00000100,0x40000000,0x02080000,
|
||||
0x40080100,0x00080000,0x02000100,0x40080100, 0x42000100,0x42080000,0x00080100,0x40000000,
|
||||
0x02000000,0x40080000,0x40080000,0x00000000, 0x40000100,0x42080100,0x42080100,0x02000100,
|
||||
0x42080000,0x40000100,0x00000000,0x42000000, 0x02080100,0x02000000,0x42000000,0x00080100,
|
||||
0x00080000,0x42000100,0x00000100,0x02000000, 0x40000000,0x02080000,0x42000100,0x40080100,
|
||||
0x02000100,0x40000000,0x42080000,0x02080100, 0x40080100,0x00000100,0x02000000,0x42080000,
|
||||
0x42080100,0x00080100,0x42000000,0x42080100, 0x02080000,0x00000000,0x40080000,0x42000000,
|
||||
0x00080100,0x02000100,0x40000100,0x00080000, 0x00000000,0x40080000,0x02080100,0x40000100},
|
||||
{
|
||||
0x20000010,0x20400000,0x00004000,0x20404010, 0x20400000,0x00000010,0x20404010,0x00400000,
|
||||
0x20004000,0x00404010,0x00400000,0x20000010, 0x00400010,0x20004000,0x20000000,0x00004010,
|
||||
0x00000000,0x00400010,0x20004010,0x00004000, 0x00404000,0x20004010,0x00000010,0x20400010,
|
||||
0x20400010,0x00000000,0x00404010,0x20404000, 0x00004010,0x00404000,0x20404000,0x20000000,
|
||||
0x20004000,0x00000010,0x20400010,0x00404000, 0x20404010,0x00400000,0x00004010,0x20000010,
|
||||
0x00400000,0x20004000,0x20000000,0x00004010, 0x20000010,0x20404010,0x00404000,0x20400000,
|
||||
0x00404010,0x20404000,0x00000000,0x20400010, 0x00000010,0x00004000,0x20400000,0x00404010,
|
||||
0x00004000,0x00400010,0x20004010,0x00000000, 0x20404000,0x20000000,0x00400010,0x20004010},
|
||||
{
|
||||
0x00200000,0x04200002,0x04000802,0x00000000, 0x00000800,0x04000802,0x00200802,0x04200800,
|
||||
0x04200802,0x00200000,0x00000000,0x04000002, 0x00000002,0x04000000,0x04200002,0x00000802,
|
||||
0x04000800,0x00200802,0x00200002,0x04000800, 0x04000002,0x04200000,0x04200800,0x00200002,
|
||||
0x04200000,0x00000800,0x00000802,0x04200802, 0x00200800,0x00000002,0x04000000,0x00200800,
|
||||
0x04000000,0x00200800,0x00200000,0x04000802, 0x04000802,0x04200002,0x04200002,0x00000002,
|
||||
0x00200002,0x04000000,0x04000800,0x00200000, 0x04200800,0x00000802,0x00200802,0x04200800,
|
||||
0x00000802,0x04000002,0x04200802,0x04200000, 0x00200800,0x00000000,0x00000002,0x04200802,
|
||||
0x00000000,0x00200802,0x04200000,0x00000800, 0x04000002,0x04000800,0x00000800,0x00200002},
|
||||
{
|
||||
0x10001040,0x00001000,0x00040000,0x10041040, 0x10000000,0x10001040,0x00000040,0x10000000,
|
||||
0x00040040,0x10040000,0x10041040,0x00041000, 0x10041000,0x00041040,0x00001000,0x00000040,
|
||||
0x10040000,0x10000040,0x10001000,0x00001040, 0x00041000,0x00040040,0x10040040,0x10041000,
|
||||
0x00001040,0x00000000,0x00000000,0x10040040, 0x10000040,0x10001000,0x00041040,0x00040000,
|
||||
0x00041040,0x00040000,0x10041000,0x00001000, 0x00000040,0x10040040,0x00001000,0x00041040,
|
||||
0x10001000,0x00000040,0x10000040,0x10040000, 0x10040040,0x10000000,0x00040000,0x10001040,
|
||||
0x00000000,0x10041040,0x00040040,0x10000040, 0x10040000,0x10001000,0x10001040,0x00000000,
|
||||
0x10041040,0x00041000,0x00041000,0x00001040, 0x00001040,0x00040040,0x10000000,0x10041000}
|
||||
};
|
||||
|
||||
/* Set key (initialize key schedule array) */
|
||||
static void RawSetKey (int encryption, const byte *key, word32 *scheduledKey)
|
||||
{
|
||||
byte buffer[56+56+8];
|
||||
byte *const pc1m=buffer; /* place to modify pc1 into */
|
||||
byte *const pcr=pc1m+56; /* place to rotate pc1 into */
|
||||
byte *const ks=pcr+56;
|
||||
register int i,j,l;
|
||||
int m;
|
||||
|
||||
for (j=0; j<56; j++) { /* convert pc1 to bits of key */
|
||||
l=pc1[j]-1; /* integer bit location */
|
||||
m = l & 07; /* find bit */
|
||||
pc1m[j]=(key[l>>3] & /* find which key byte l is in */
|
||||
bytebit[m]) /* and which bit of that byte */
|
||||
? 1 : 0; /* and store 1-bit result */
|
||||
}
|
||||
for (i=0; i<16; i++) { /* key chunk for each iteration */
|
||||
memset(ks,0,8); /* Clear key schedule */
|
||||
for (j=0; j<56; j++) /* rotate pc1 the right amount */
|
||||
pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28];
|
||||
/* rotate left and right halves independently */
|
||||
for (j=0; j<48; j++){ /* select bits individually */
|
||||
/* check bit that goes to ks[j] */
|
||||
if (pcr[pc2[j]-1]){
|
||||
/* mask it in if it's there */
|
||||
l= j % 6;
|
||||
ks[j/6] |= bytebit[l] >> 2;
|
||||
}
|
||||
}
|
||||
/* Now convert to odd/even interleaved form for use in F */
|
||||
scheduledKey[2*i] = ((word32)ks[0] << 24)
|
||||
| ((word32)ks[2] << 16)
|
||||
| ((word32)ks[4] << 8)
|
||||
| ((word32)ks[6]);
|
||||
scheduledKey[2*i+1] = ((word32)ks[1] << 24)
|
||||
| ((word32)ks[3] << 16)
|
||||
| ((word32)ks[5] << 8)
|
||||
| ((word32)ks[7]);
|
||||
}
|
||||
|
||||
if (!encryption) // reverse key schedule order
|
||||
for (i=0; i<16; i+=2)
|
||||
{
|
||||
word32 b = scheduledKey[i];
|
||||
scheduledKey[i] = scheduledKey[32-2-i];
|
||||
scheduledKey[32-2-i] = b;
|
||||
|
||||
b = scheduledKey[i+1];
|
||||
scheduledKey[i+1] = scheduledKey[32-1-i];
|
||||
scheduledKey[32-1-i] = b;
|
||||
}
|
||||
|
||||
burn (buffer, sizeof (buffer));
|
||||
}
|
||||
|
||||
static void RawProcessBlock(word32 *l_, word32 *r_, const word32 *k)
|
||||
{
|
||||
word32 l = *l_, r = *r_;
|
||||
const word32 *kptr=k;
|
||||
unsigned i;
|
||||
|
||||
for (i=0; i<8; i++)
|
||||
{
|
||||
word32 work = rotrFixed(r, 4U) ^ kptr[4*i+0];
|
||||
l ^= Spbox[6][(work) & 0x3f]
|
||||
^ Spbox[4][(work >> 8) & 0x3f]
|
||||
^ Spbox[2][(work >> 16) & 0x3f]
|
||||
^ Spbox[0][(work >> 24) & 0x3f];
|
||||
work = r ^ kptr[4*i+1];
|
||||
l ^= Spbox[7][(work) & 0x3f]
|
||||
^ Spbox[5][(work >> 8) & 0x3f]
|
||||
^ Spbox[3][(work >> 16) & 0x3f]
|
||||
^ Spbox[1][(work >> 24) & 0x3f];
|
||||
|
||||
work = rotrFixed(l, 4U) ^ kptr[4*i+2];
|
||||
r ^= Spbox[6][(work) & 0x3f]
|
||||
^ Spbox[4][(work >> 8) & 0x3f]
|
||||
^ Spbox[2][(work >> 16) & 0x3f]
|
||||
^ Spbox[0][(work >> 24) & 0x3f];
|
||||
work = l ^ kptr[4*i+3];
|
||||
r ^= Spbox[7][(work) & 0x3f]
|
||||
^ Spbox[5][(work >> 8) & 0x3f]
|
||||
^ Spbox[3][(work >> 16) & 0x3f]
|
||||
^ Spbox[1][(work >> 24) & 0x3f];
|
||||
}
|
||||
|
||||
*l_ = l; *r_ = r;
|
||||
}
|
||||
|
||||
void TripleDesSetKey (const byte *userKey, unsigned int length, TDES_KEY *ks)
|
||||
{
|
||||
RawSetKey (1, userKey + 0, ks->k1);
|
||||
RawSetKey (1, userKey + 8, ks->k2);
|
||||
RawSetKey (1, userKey + 16, ks->k3);
|
||||
RawSetKey (0, userKey + 16, ks->k1d);
|
||||
RawSetKey (0, userKey + 8, ks->k2d);
|
||||
RawSetKey (0, userKey + 0, ks->k3d);
|
||||
}
|
||||
|
||||
void TripleDesEncrypt (byte *inBlock, byte *outBlock, TDES_KEY *key, int encrypt)
|
||||
{
|
||||
word32 left = BE32 (((word32 *)inBlock)[0]);
|
||||
word32 right = BE32 (((word32 *)inBlock)[1]);
|
||||
word32 work;
|
||||
|
||||
right = rotlFixed(right, 4U);
|
||||
work = (left ^ right) & 0xf0f0f0f0;
|
||||
left ^= work;
|
||||
right = rotrFixed(right^work, 20U);
|
||||
work = (left ^ right) & 0xffff0000;
|
||||
left ^= work;
|
||||
right = rotrFixed(right^work, 18U);
|
||||
work = (left ^ right) & 0x33333333;
|
||||
left ^= work;
|
||||
right = rotrFixed(right^work, 6U);
|
||||
work = (left ^ right) & 0x00ff00ff;
|
||||
left ^= work;
|
||||
right = rotlFixed(right^work, 9U);
|
||||
work = (left ^ right) & 0xaaaaaaaa;
|
||||
left = rotlFixed(left^work, 1U);
|
||||
right ^= work;
|
||||
|
||||
RawProcessBlock (&left, &right, encrypt ? key->k1 : key->k1d);
|
||||
RawProcessBlock (&right, &left, !encrypt ? key->k2 : key->k2d);
|
||||
RawProcessBlock (&left, &right, encrypt ? key->k3 : key->k3d);
|
||||
|
||||
right = rotrFixed(right, 1U);
|
||||
work = (left ^ right) & 0xaaaaaaaa;
|
||||
right ^= work;
|
||||
left = rotrFixed(left^work, 9U);
|
||||
work = (left ^ right) & 0x00ff00ff;
|
||||
right ^= work;
|
||||
left = rotlFixed(left^work, 6U);
|
||||
work = (left ^ right) & 0x33333333;
|
||||
right ^= work;
|
||||
left = rotlFixed(left^work, 18U);
|
||||
work = (left ^ right) & 0xffff0000;
|
||||
right ^= work;
|
||||
left = rotlFixed(left^work, 20U);
|
||||
work = (left ^ right) & 0xf0f0f0f0;
|
||||
right ^= work;
|
||||
left = rotrFixed(left^work, 4U);
|
||||
|
||||
((word32 *)outBlock)[0] = BE32 (right);
|
||||
((word32 *)outBlock)[1] = BE32 (left);
|
||||
}
|
||||
28
src/Crypto/Des.h
Normal file
28
src/Crypto/Des.h
Normal file
@@ -0,0 +1,28 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
|
||||
#ifndef HEADER_Crypto_DES
|
||||
#define HEADER_Crypto_DES
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct TRIPLE_DES_KEY_STRUCT
|
||||
{
|
||||
unsigned __int32 k1[32];
|
||||
unsigned __int32 k2[32];
|
||||
unsigned __int32 k3[32];
|
||||
unsigned __int32 k1d[32];
|
||||
unsigned __int32 k2d[32];
|
||||
unsigned __int32 k3d[32];
|
||||
} TDES_KEY;
|
||||
|
||||
void TripleDesEncrypt (byte *inBlock, byte *outBlock, TDES_KEY *key, int encrypt);
|
||||
void TripleDesSetKey (const byte *userKey, unsigned int length, TDES_KEY *ks);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // HEADER_Crypto_DES
|
||||
1
src/Crypto/Makefile
Normal file
1
src/Crypto/Makefile
Normal file
@@ -0,0 +1 @@
|
||||
!INCLUDE $(NTMAKEENV)\makefile.def
|
||||
15
src/Crypto/Makefile.inc
Normal file
15
src/Crypto/Makefile.inc
Normal file
@@ -0,0 +1,15 @@
|
||||
TC_ASFLAGS = -Xvc -Ox
|
||||
|
||||
!if "$(TC_ARCH)" == "x86"
|
||||
TC_ASFLAGS = $(TC_ASFLAGS) -f win32 --prefix _ -D MS_STDCALL -D DLL_EXPORT
|
||||
!else
|
||||
TC_ASFLAGS = $(TC_ASFLAGS) -f win64
|
||||
!endif
|
||||
|
||||
TC_ASM_ERR_LOG = ..\Driver\build_errors_asm.log
|
||||
|
||||
"$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj": Aes_$(TC_ARCH).asm
|
||||
nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).lst" Aes_$(TC_ARCH).asm 2>$(TC_ASM_ERR_LOG)
|
||||
|
||||
"$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj": Aes_hw_cpu.asm
|
||||
nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_hw_cpu.lst" Aes_hw_cpu.asm 2>$(TC_ASM_ERR_LOG)
|
||||
490
src/Crypto/Rmd160.c
Normal file
490
src/Crypto/Rmd160.c
Normal file
@@ -0,0 +1,490 @@
|
||||
// RIPEMD-160 written and placed in the public domain by Wei Dai
|
||||
|
||||
/*
|
||||
* This code implements the MD4 message-digest algorithm.
|
||||
* The algorithm is due to Ron Rivest. This code was
|
||||
* written by Colin Plumb in 1993, no copyright is claimed.
|
||||
* This code is in the public domain; do with it what you wish.
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#include <memory.h>
|
||||
#include "Common/Tcdefs.h"
|
||||
#include "Common/Endian.h"
|
||||
#include "Rmd160.h"
|
||||
|
||||
#define F(x, y, z) (x ^ y ^ z)
|
||||
#define G(x, y, z) (z ^ (x & (y^z)))
|
||||
#define H(x, y, z) (z ^ (x | ~y))
|
||||
#define I(x, y, z) (y ^ (z & (x^y)))
|
||||
#define J(x, y, z) (x ^ (y | ~z))
|
||||
|
||||
#define PUT_64BIT_LE(cp, value) do { \
|
||||
(cp)[7] = (byte) ((value) >> 56); \
|
||||
(cp)[6] = (byte) ((value) >> 48); \
|
||||
(cp)[5] = (byte) ((value) >> 40); \
|
||||
(cp)[4] = (byte) ((value) >> 32); \
|
||||
(cp)[3] = (byte) ((value) >> 24); \
|
||||
(cp)[2] = (byte) ((value) >> 16); \
|
||||
(cp)[1] = (byte) ((value) >> 8); \
|
||||
(cp)[0] = (byte) (value); } while (0)
|
||||
|
||||
#define PUT_32BIT_LE(cp, value) do { \
|
||||
(cp)[3] = (byte) ((value) >> 24); \
|
||||
(cp)[2] = (byte) ((value) >> 16); \
|
||||
(cp)[1] = (byte) ((value) >> 8); \
|
||||
(cp)[0] = (byte) (value); } while (0)
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
static byte PADDING[64] = {
|
||||
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
static byte PADDING[64];
|
||||
|
||||
#endif
|
||||
|
||||
void RMD160Init (RMD160_CTX *ctx)
|
||||
{
|
||||
ctx->count = 0;
|
||||
ctx->state[0] = 0x67452301;
|
||||
ctx->state[1] = 0xefcdab89;
|
||||
ctx->state[2] = 0x98badcfe;
|
||||
ctx->state[3] = 0x10325476;
|
||||
ctx->state[4] = 0xc3d2e1f0;
|
||||
PADDING[0] = 0x80;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update context to reflect the concatenation of another buffer full
|
||||
* of bytes.
|
||||
*/
|
||||
void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 lenArg)
|
||||
{
|
||||
#ifndef TC_WINDOWS_BOOT
|
||||
uint64 len = lenArg, have, need;
|
||||
#else
|
||||
uint16 len = (uint16) lenArg, have, need;
|
||||
#endif
|
||||
|
||||
/* Check how many bytes we already have and how many more we need. */
|
||||
have = ((ctx->count >> 3) & (RIPEMD160_BLOCK_LENGTH - 1));
|
||||
need = RIPEMD160_BLOCK_LENGTH - have;
|
||||
|
||||
/* Update bitcount */
|
||||
ctx->count += len << 3;
|
||||
|
||||
if (len >= need) {
|
||||
if (have != 0) {
|
||||
memcpy (ctx->buffer + have, input, (size_t) need);
|
||||
RMD160Transform ((uint32 *) ctx->state, (const uint32 *) ctx->buffer);
|
||||
input += need;
|
||||
len -= need;
|
||||
have = 0;
|
||||
}
|
||||
|
||||
/* Process data in RIPEMD160_BLOCK_LENGTH-byte chunks. */
|
||||
while (len >= RIPEMD160_BLOCK_LENGTH) {
|
||||
RMD160Transform ((uint32 *) ctx->state, (const uint32 *) input);
|
||||
input += RIPEMD160_BLOCK_LENGTH;
|
||||
len -= RIPEMD160_BLOCK_LENGTH;
|
||||
}
|
||||
}
|
||||
|
||||
/* Handle any remaining bytes of data. */
|
||||
if (len != 0)
|
||||
memcpy (ctx->buffer + have, input, (size_t) len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Pad pad to 64-byte boundary with the bit pattern
|
||||
* 1 0* (64-bit count of bits processed, MSB-first)
|
||||
*/
|
||||
static void RMD160Pad(RMD160_CTX *ctx)
|
||||
{
|
||||
byte count[8];
|
||||
uint32 padlen;
|
||||
|
||||
/* Convert count to 8 bytes in little endian order. */
|
||||
|
||||
#ifndef TC_WINDOWS_BOOT
|
||||
PUT_64BIT_LE(count, ctx->count);
|
||||
#else
|
||||
*(uint32 *) (count + 4) = 0;
|
||||
*(uint16 *) (count + 2) = 0;
|
||||
*(uint16 *) (count + 0) = ctx->count;
|
||||
#endif
|
||||
|
||||
/* Pad out to 56 mod 64. */
|
||||
padlen = RIPEMD160_BLOCK_LENGTH -
|
||||
(uint32)((ctx->count >> 3) & (RIPEMD160_BLOCK_LENGTH - 1));
|
||||
if (padlen < 1 + 8)
|
||||
padlen += RIPEMD160_BLOCK_LENGTH;
|
||||
RMD160Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
|
||||
RMD160Update(ctx, count, 8);
|
||||
}
|
||||
|
||||
/*
|
||||
* Final wrapup--call RMD160Pad, fill in digest and zero out ctx.
|
||||
*/
|
||||
void RMD160Final(unsigned char *digest, RMD160_CTX *ctx)
|
||||
{
|
||||
int i;
|
||||
|
||||
RMD160Pad(ctx);
|
||||
if (digest) {
|
||||
for (i = 0; i < 5; i++)
|
||||
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
|
||||
memset (ctx, 0, sizeof(*ctx));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
#define word32 unsigned __int32
|
||||
|
||||
#define k0 0
|
||||
#define k1 0x5a827999UL
|
||||
#define k2 0x6ed9eba1UL
|
||||
#define k3 0x8f1bbcdcUL
|
||||
#define k4 0xa953fd4eUL
|
||||
#define k5 0x50a28be6UL
|
||||
#define k6 0x5c4dd124UL
|
||||
#define k7 0x6d703ef3UL
|
||||
#define k8 0x7a6d76e9UL
|
||||
#define k9 0
|
||||
|
||||
static word32 rotlFixed (word32 x, unsigned int y)
|
||||
{
|
||||
return (word32)((x<<y) | (x>>(sizeof(word32)*8-y)));
|
||||
}
|
||||
|
||||
#define Subround(f, a, b, c, d, e, x, s, k) \
|
||||
a += f(b, c, d) + x + k;\
|
||||
a = rotlFixed((word32)a, s) + e;\
|
||||
c = rotlFixed((word32)c, 10U)
|
||||
|
||||
void RMD160Transform (unsigned __int32 *digest, const unsigned __int32 *data)
|
||||
{
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
const word32 *X = data;
|
||||
#else
|
||||
word32 X[16];
|
||||
int i;
|
||||
#endif
|
||||
|
||||
word32 a1, b1, c1, d1, e1, a2, b2, c2, d2, e2;
|
||||
a1 = a2 = digest[0];
|
||||
b1 = b2 = digest[1];
|
||||
c1 = c2 = digest[2];
|
||||
d1 = d2 = digest[3];
|
||||
e1 = e2 = digest[4];
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
X[i] = LE32 (data[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
Subround(F, a1, b1, c1, d1, e1, X[ 0], 11, k0);
|
||||
Subround(F, e1, a1, b1, c1, d1, X[ 1], 14, k0);
|
||||
Subround(F, d1, e1, a1, b1, c1, X[ 2], 15, k0);
|
||||
Subround(F, c1, d1, e1, a1, b1, X[ 3], 12, k0);
|
||||
Subround(F, b1, c1, d1, e1, a1, X[ 4], 5, k0);
|
||||
Subround(F, a1, b1, c1, d1, e1, X[ 5], 8, k0);
|
||||
Subround(F, e1, a1, b1, c1, d1, X[ 6], 7, k0);
|
||||
Subround(F, d1, e1, a1, b1, c1, X[ 7], 9, k0);
|
||||
Subround(F, c1, d1, e1, a1, b1, X[ 8], 11, k0);
|
||||
Subround(F, b1, c1, d1, e1, a1, X[ 9], 13, k0);
|
||||
Subround(F, a1, b1, c1, d1, e1, X[10], 14, k0);
|
||||
Subround(F, e1, a1, b1, c1, d1, X[11], 15, k0);
|
||||
Subround(F, d1, e1, a1, b1, c1, X[12], 6, k0);
|
||||
Subround(F, c1, d1, e1, a1, b1, X[13], 7, k0);
|
||||
Subround(F, b1, c1, d1, e1, a1, X[14], 9, k0);
|
||||
Subround(F, a1, b1, c1, d1, e1, X[15], 8, k0);
|
||||
|
||||
Subround(G, e1, a1, b1, c1, d1, X[ 7], 7, k1);
|
||||
Subround(G, d1, e1, a1, b1, c1, X[ 4], 6, k1);
|
||||
Subround(G, c1, d1, e1, a1, b1, X[13], 8, k1);
|
||||
Subround(G, b1, c1, d1, e1, a1, X[ 1], 13, k1);
|
||||
Subround(G, a1, b1, c1, d1, e1, X[10], 11, k1);
|
||||
Subround(G, e1, a1, b1, c1, d1, X[ 6], 9, k1);
|
||||
Subround(G, d1, e1, a1, b1, c1, X[15], 7, k1);
|
||||
Subround(G, c1, d1, e1, a1, b1, X[ 3], 15, k1);
|
||||
Subround(G, b1, c1, d1, e1, a1, X[12], 7, k1);
|
||||
Subround(G, a1, b1, c1, d1, e1, X[ 0], 12, k1);
|
||||
Subround(G, e1, a1, b1, c1, d1, X[ 9], 15, k1);
|
||||
Subround(G, d1, e1, a1, b1, c1, X[ 5], 9, k1);
|
||||
Subround(G, c1, d1, e1, a1, b1, X[ 2], 11, k1);
|
||||
Subround(G, b1, c1, d1, e1, a1, X[14], 7, k1);
|
||||
Subround(G, a1, b1, c1, d1, e1, X[11], 13, k1);
|
||||
Subround(G, e1, a1, b1, c1, d1, X[ 8], 12, k1);
|
||||
|
||||
Subround(H, d1, e1, a1, b1, c1, X[ 3], 11, k2);
|
||||
Subround(H, c1, d1, e1, a1, b1, X[10], 13, k2);
|
||||
Subround(H, b1, c1, d1, e1, a1, X[14], 6, k2);
|
||||
Subround(H, a1, b1, c1, d1, e1, X[ 4], 7, k2);
|
||||
Subround(H, e1, a1, b1, c1, d1, X[ 9], 14, k2);
|
||||
Subround(H, d1, e1, a1, b1, c1, X[15], 9, k2);
|
||||
Subround(H, c1, d1, e1, a1, b1, X[ 8], 13, k2);
|
||||
Subround(H, b1, c1, d1, e1, a1, X[ 1], 15, k2);
|
||||
Subround(H, a1, b1, c1, d1, e1, X[ 2], 14, k2);
|
||||
Subround(H, e1, a1, b1, c1, d1, X[ 7], 8, k2);
|
||||
Subround(H, d1, e1, a1, b1, c1, X[ 0], 13, k2);
|
||||
Subround(H, c1, d1, e1, a1, b1, X[ 6], 6, k2);
|
||||
Subround(H, b1, c1, d1, e1, a1, X[13], 5, k2);
|
||||
Subround(H, a1, b1, c1, d1, e1, X[11], 12, k2);
|
||||
Subround(H, e1, a1, b1, c1, d1, X[ 5], 7, k2);
|
||||
Subround(H, d1, e1, a1, b1, c1, X[12], 5, k2);
|
||||
|
||||
Subround(I, c1, d1, e1, a1, b1, X[ 1], 11, k3);
|
||||
Subround(I, b1, c1, d1, e1, a1, X[ 9], 12, k3);
|
||||
Subround(I, a1, b1, c1, d1, e1, X[11], 14, k3);
|
||||
Subround(I, e1, a1, b1, c1, d1, X[10], 15, k3);
|
||||
Subround(I, d1, e1, a1, b1, c1, X[ 0], 14, k3);
|
||||
Subround(I, c1, d1, e1, a1, b1, X[ 8], 15, k3);
|
||||
Subround(I, b1, c1, d1, e1, a1, X[12], 9, k3);
|
||||
Subround(I, a1, b1, c1, d1, e1, X[ 4], 8, k3);
|
||||
Subround(I, e1, a1, b1, c1, d1, X[13], 9, k3);
|
||||
Subround(I, d1, e1, a1, b1, c1, X[ 3], 14, k3);
|
||||
Subround(I, c1, d1, e1, a1, b1, X[ 7], 5, k3);
|
||||
Subround(I, b1, c1, d1, e1, a1, X[15], 6, k3);
|
||||
Subround(I, a1, b1, c1, d1, e1, X[14], 8, k3);
|
||||
Subround(I, e1, a1, b1, c1, d1, X[ 5], 6, k3);
|
||||
Subround(I, d1, e1, a1, b1, c1, X[ 6], 5, k3);
|
||||
Subround(I, c1, d1, e1, a1, b1, X[ 2], 12, k3);
|
||||
|
||||
Subround(J, b1, c1, d1, e1, a1, X[ 4], 9, k4);
|
||||
Subround(J, a1, b1, c1, d1, e1, X[ 0], 15, k4);
|
||||
Subround(J, e1, a1, b1, c1, d1, X[ 5], 5, k4);
|
||||
Subround(J, d1, e1, a1, b1, c1, X[ 9], 11, k4);
|
||||
Subround(J, c1, d1, e1, a1, b1, X[ 7], 6, k4);
|
||||
Subround(J, b1, c1, d1, e1, a1, X[12], 8, k4);
|
||||
Subround(J, a1, b1, c1, d1, e1, X[ 2], 13, k4);
|
||||
Subround(J, e1, a1, b1, c1, d1, X[10], 12, k4);
|
||||
Subround(J, d1, e1, a1, b1, c1, X[14], 5, k4);
|
||||
Subround(J, c1, d1, e1, a1, b1, X[ 1], 12, k4);
|
||||
Subround(J, b1, c1, d1, e1, a1, X[ 3], 13, k4);
|
||||
Subround(J, a1, b1, c1, d1, e1, X[ 8], 14, k4);
|
||||
Subround(J, e1, a1, b1, c1, d1, X[11], 11, k4);
|
||||
Subround(J, d1, e1, a1, b1, c1, X[ 6], 8, k4);
|
||||
Subround(J, c1, d1, e1, a1, b1, X[15], 5, k4);
|
||||
Subround(J, b1, c1, d1, e1, a1, X[13], 6, k4);
|
||||
|
||||
Subround(J, a2, b2, c2, d2, e2, X[ 5], 8, k5);
|
||||
Subround(J, e2, a2, b2, c2, d2, X[14], 9, k5);
|
||||
Subround(J, d2, e2, a2, b2, c2, X[ 7], 9, k5);
|
||||
Subround(J, c2, d2, e2, a2, b2, X[ 0], 11, k5);
|
||||
Subround(J, b2, c2, d2, e2, a2, X[ 9], 13, k5);
|
||||
Subround(J, a2, b2, c2, d2, e2, X[ 2], 15, k5);
|
||||
Subround(J, e2, a2, b2, c2, d2, X[11], 15, k5);
|
||||
Subround(J, d2, e2, a2, b2, c2, X[ 4], 5, k5);
|
||||
Subround(J, c2, d2, e2, a2, b2, X[13], 7, k5);
|
||||
Subround(J, b2, c2, d2, e2, a2, X[ 6], 7, k5);
|
||||
Subround(J, a2, b2, c2, d2, e2, X[15], 8, k5);
|
||||
Subround(J, e2, a2, b2, c2, d2, X[ 8], 11, k5);
|
||||
Subround(J, d2, e2, a2, b2, c2, X[ 1], 14, k5);
|
||||
Subround(J, c2, d2, e2, a2, b2, X[10], 14, k5);
|
||||
Subround(J, b2, c2, d2, e2, a2, X[ 3], 12, k5);
|
||||
Subround(J, a2, b2, c2, d2, e2, X[12], 6, k5);
|
||||
|
||||
Subround(I, e2, a2, b2, c2, d2, X[ 6], 9, k6);
|
||||
Subround(I, d2, e2, a2, b2, c2, X[11], 13, k6);
|
||||
Subround(I, c2, d2, e2, a2, b2, X[ 3], 15, k6);
|
||||
Subround(I, b2, c2, d2, e2, a2, X[ 7], 7, k6);
|
||||
Subround(I, a2, b2, c2, d2, e2, X[ 0], 12, k6);
|
||||
Subround(I, e2, a2, b2, c2, d2, X[13], 8, k6);
|
||||
Subround(I, d2, e2, a2, b2, c2, X[ 5], 9, k6);
|
||||
Subround(I, c2, d2, e2, a2, b2, X[10], 11, k6);
|
||||
Subround(I, b2, c2, d2, e2, a2, X[14], 7, k6);
|
||||
Subround(I, a2, b2, c2, d2, e2, X[15], 7, k6);
|
||||
Subround(I, e2, a2, b2, c2, d2, X[ 8], 12, k6);
|
||||
Subround(I, d2, e2, a2, b2, c2, X[12], 7, k6);
|
||||
Subround(I, c2, d2, e2, a2, b2, X[ 4], 6, k6);
|
||||
Subround(I, b2, c2, d2, e2, a2, X[ 9], 15, k6);
|
||||
Subround(I, a2, b2, c2, d2, e2, X[ 1], 13, k6);
|
||||
Subround(I, e2, a2, b2, c2, d2, X[ 2], 11, k6);
|
||||
|
||||
Subround(H, d2, e2, a2, b2, c2, X[15], 9, k7);
|
||||
Subround(H, c2, d2, e2, a2, b2, X[ 5], 7, k7);
|
||||
Subround(H, b2, c2, d2, e2, a2, X[ 1], 15, k7);
|
||||
Subround(H, a2, b2, c2, d2, e2, X[ 3], 11, k7);
|
||||
Subround(H, e2, a2, b2, c2, d2, X[ 7], 8, k7);
|
||||
Subround(H, d2, e2, a2, b2, c2, X[14], 6, k7);
|
||||
Subround(H, c2, d2, e2, a2, b2, X[ 6], 6, k7);
|
||||
Subround(H, b2, c2, d2, e2, a2, X[ 9], 14, k7);
|
||||
Subround(H, a2, b2, c2, d2, e2, X[11], 12, k7);
|
||||
Subround(H, e2, a2, b2, c2, d2, X[ 8], 13, k7);
|
||||
Subround(H, d2, e2, a2, b2, c2, X[12], 5, k7);
|
||||
Subround(H, c2, d2, e2, a2, b2, X[ 2], 14, k7);
|
||||
Subround(H, b2, c2, d2, e2, a2, X[10], 13, k7);
|
||||
Subround(H, a2, b2, c2, d2, e2, X[ 0], 13, k7);
|
||||
Subround(H, e2, a2, b2, c2, d2, X[ 4], 7, k7);
|
||||
Subround(H, d2, e2, a2, b2, c2, X[13], 5, k7);
|
||||
|
||||
Subround(G, c2, d2, e2, a2, b2, X[ 8], 15, k8);
|
||||
Subround(G, b2, c2, d2, e2, a2, X[ 6], 5, k8);
|
||||
Subround(G, a2, b2, c2, d2, e2, X[ 4], 8, k8);
|
||||
Subround(G, e2, a2, b2, c2, d2, X[ 1], 11, k8);
|
||||
Subround(G, d2, e2, a2, b2, c2, X[ 3], 14, k8);
|
||||
Subround(G, c2, d2, e2, a2, b2, X[11], 14, k8);
|
||||
Subround(G, b2, c2, d2, e2, a2, X[15], 6, k8);
|
||||
Subround(G, a2, b2, c2, d2, e2, X[ 0], 14, k8);
|
||||
Subround(G, e2, a2, b2, c2, d2, X[ 5], 6, k8);
|
||||
Subround(G, d2, e2, a2, b2, c2, X[12], 9, k8);
|
||||
Subround(G, c2, d2, e2, a2, b2, X[ 2], 12, k8);
|
||||
Subround(G, b2, c2, d2, e2, a2, X[13], 9, k8);
|
||||
Subround(G, a2, b2, c2, d2, e2, X[ 9], 12, k8);
|
||||
Subround(G, e2, a2, b2, c2, d2, X[ 7], 5, k8);
|
||||
Subround(G, d2, e2, a2, b2, c2, X[10], 15, k8);
|
||||
Subround(G, c2, d2, e2, a2, b2, X[14], 8, k8);
|
||||
|
||||
Subround(F, b2, c2, d2, e2, a2, X[12], 8, k9);
|
||||
Subround(F, a2, b2, c2, d2, e2, X[15], 5, k9);
|
||||
Subround(F, e2, a2, b2, c2, d2, X[10], 12, k9);
|
||||
Subround(F, d2, e2, a2, b2, c2, X[ 4], 9, k9);
|
||||
Subround(F, c2, d2, e2, a2, b2, X[ 1], 12, k9);
|
||||
Subround(F, b2, c2, d2, e2, a2, X[ 5], 5, k9);
|
||||
Subround(F, a2, b2, c2, d2, e2, X[ 8], 14, k9);
|
||||
Subround(F, e2, a2, b2, c2, d2, X[ 7], 6, k9);
|
||||
Subround(F, d2, e2, a2, b2, c2, X[ 6], 8, k9);
|
||||
Subround(F, c2, d2, e2, a2, b2, X[ 2], 13, k9);
|
||||
Subround(F, b2, c2, d2, e2, a2, X[13], 6, k9);
|
||||
Subround(F, a2, b2, c2, d2, e2, X[14], 5, k9);
|
||||
Subround(F, e2, a2, b2, c2, d2, X[ 0], 15, k9);
|
||||
Subround(F, d2, e2, a2, b2, c2, X[ 3], 13, k9);
|
||||
Subround(F, c2, d2, e2, a2, b2, X[ 9], 11, k9);
|
||||
Subround(F, b2, c2, d2, e2, a2, X[11], 11, k9);
|
||||
|
||||
c1 = digest[1] + c1 + d2;
|
||||
digest[1] = digest[2] + d1 + e2;
|
||||
digest[2] = digest[3] + e1 + a2;
|
||||
digest[3] = digest[4] + a1 + b2;
|
||||
digest[4] = digest[0] + b1 + c2;
|
||||
digest[0] = c1;
|
||||
}
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
/*
|
||||
Copyright (c) 2008 TrueCrypt Developers Association. All rights reserved.
|
||||
|
||||
Governed by the TrueCrypt License 3.0 the full text of which is contained in
|
||||
the file License.txt included in TrueCrypt binary and source code distribution
|
||||
packages.
|
||||
*/
|
||||
|
||||
#pragma optimize ("tl", on)
|
||||
|
||||
typedef unsigned __int32 uint32;
|
||||
typedef unsigned __int8 byte;
|
||||
|
||||
#include <stdlib.h>
|
||||
#pragma intrinsic (_lrotl)
|
||||
|
||||
static const byte OrderTab[] = {
|
||||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||||
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
||||
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
||||
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
||||
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
|
||||
5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
||||
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
||||
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
||||
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
||||
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
|
||||
};
|
||||
|
||||
static const byte RolTab[] = {
|
||||
11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
||||
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
||||
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
||||
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
||||
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
|
||||
8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
||||
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
||||
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
||||
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
||||
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
|
||||
};
|
||||
|
||||
static const uint32 KTab[] = {
|
||||
0x00000000UL,
|
||||
0x5A827999UL,
|
||||
0x6ED9EBA1UL,
|
||||
0x8F1BBCDCUL,
|
||||
0xA953FD4EUL,
|
||||
0x50A28BE6UL,
|
||||
0x5C4DD124UL,
|
||||
0x6D703EF3UL,
|
||||
0x7A6D76E9UL,
|
||||
0x00000000UL
|
||||
};
|
||||
|
||||
|
||||
void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data)
|
||||
{
|
||||
uint32 a, b, c, d, e;
|
||||
uint32 a2, b2, c2, d2, e2;
|
||||
byte pos;
|
||||
uint32 tmp;
|
||||
|
||||
a = state[0];
|
||||
b = state[1];
|
||||
c = state[2];
|
||||
d = state[3];
|
||||
e = state[4];
|
||||
|
||||
for (pos = 0; pos < 160; ++pos)
|
||||
{
|
||||
tmp = a + data[OrderTab[pos]] + KTab[pos >> 4];
|
||||
|
||||
switch (pos >> 4)
|
||||
{
|
||||
case 0: case 9: tmp += F (b, c, d); break;
|
||||
case 1: case 8: tmp += G (b, c, d); break;
|
||||
case 2: case 7: tmp += H (b, c, d); break;
|
||||
case 3: case 6: tmp += I (b, c, d); break;
|
||||
case 4: case 5: tmp += J (b, c, d); break;
|
||||
}
|
||||
|
||||
tmp = _lrotl (tmp, RolTab[pos]) + e;
|
||||
a = e;
|
||||
e = d;
|
||||
d = _lrotl (c, 10);
|
||||
c = b;
|
||||
b = tmp;
|
||||
|
||||
if (pos == 79)
|
||||
{
|
||||
a2 = a;
|
||||
b2 = b;
|
||||
c2 = c;
|
||||
d2 = d;
|
||||
e2 = e;
|
||||
|
||||
a = state[0];
|
||||
b = state[1];
|
||||
c = state[2];
|
||||
d = state[3];
|
||||
e = state[4];
|
||||
}
|
||||
}
|
||||
|
||||
tmp = state[1] + c2 + d;
|
||||
state[1] = state[2] + d2 + e;
|
||||
state[2] = state[3] + e2 + a;
|
||||
state[3] = state[4] + a2 + b;
|
||||
state[4] = state[0] + b2 + c;
|
||||
state[0] = tmp;
|
||||
}
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
33
src/Crypto/Rmd160.h
Normal file
33
src/Crypto/Rmd160.h
Normal file
@@ -0,0 +1,33 @@
|
||||
#ifndef TC_HEADER_Crypto_Ripemd160
|
||||
#define TC_HEADER_Crypto_Ripemd160
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#define RIPEMD160_BLOCK_LENGTH 64
|
||||
|
||||
typedef struct RMD160Context
|
||||
{
|
||||
unsigned __int32 state[5];
|
||||
#ifndef TC_WINDOWS_BOOT
|
||||
uint64 count;
|
||||
#else
|
||||
uint16 count;
|
||||
#endif
|
||||
unsigned char buffer[RIPEMD160_BLOCK_LENGTH];
|
||||
} RMD160_CTX;
|
||||
|
||||
void RMD160Init (RMD160_CTX *ctx);
|
||||
void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data);
|
||||
void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 len);
|
||||
void RMD160Final (unsigned char *digest, RMD160_CTX *ctx);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // TC_HEADER_Crypto_Ripemd160
|
||||
943
src/Crypto/Serpent.c
Normal file
943
src/Crypto/Serpent.c
Normal file
@@ -0,0 +1,943 @@
|
||||
// serpent.cpp - written and placed in the public domain by Wei Dai
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#ifdef TC_WINDOWS_BOOT
|
||||
#pragma optimize ("t", on)
|
||||
#endif
|
||||
|
||||
#include "Serpent.h"
|
||||
#include "Common/Endian.h"
|
||||
|
||||
#include <memory.h>
|
||||
|
||||
#if defined(_WIN32) && !defined(_DEBUG)
|
||||
#include <stdlib.h>
|
||||
#define rotlFixed _rotl
|
||||
#define rotrFixed _rotr
|
||||
#else
|
||||
#define rotlFixed(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
|
||||
#define rotrFixed(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
|
||||
#endif
|
||||
|
||||
// linear transformation
|
||||
#define LT(i,a,b,c,d,e) {\
|
||||
a = rotlFixed(a, 13); \
|
||||
c = rotlFixed(c, 3); \
|
||||
d = rotlFixed(d ^ c ^ (a << 3), 7); \
|
||||
b = rotlFixed(b ^ a ^ c, 1); \
|
||||
a = rotlFixed(a ^ b ^ d, 5); \
|
||||
c = rotlFixed(c ^ d ^ (b << 7), 22);}
|
||||
|
||||
// inverse linear transformation
|
||||
#define ILT(i,a,b,c,d,e) {\
|
||||
c = rotrFixed(c, 22); \
|
||||
a = rotrFixed(a, 5); \
|
||||
c ^= d ^ (b << 7); \
|
||||
a ^= b ^ d; \
|
||||
b = rotrFixed(b, 1); \
|
||||
d = rotrFixed(d, 7) ^ c ^ (a << 3); \
|
||||
b ^= a ^ c; \
|
||||
c = rotrFixed(c, 3); \
|
||||
a = rotrFixed(a, 13);}
|
||||
|
||||
// order of output from S-box functions
|
||||
#define beforeS0(f) f(0,a,b,c,d,e)
|
||||
#define afterS0(f) f(1,b,e,c,a,d)
|
||||
#define afterS1(f) f(2,c,b,a,e,d)
|
||||
#define afterS2(f) f(3,a,e,b,d,c)
|
||||
#define afterS3(f) f(4,e,b,d,c,a)
|
||||
#define afterS4(f) f(5,b,a,e,c,d)
|
||||
#define afterS5(f) f(6,a,c,b,e,d)
|
||||
#define afterS6(f) f(7,a,c,d,b,e)
|
||||
#define afterS7(f) f(8,d,e,b,a,c)
|
||||
|
||||
// order of output from inverse S-box functions
|
||||
#define beforeI7(f) f(8,a,b,c,d,e)
|
||||
#define afterI7(f) f(7,d,a,b,e,c)
|
||||
#define afterI6(f) f(6,a,b,c,e,d)
|
||||
#define afterI5(f) f(5,b,d,e,c,a)
|
||||
#define afterI4(f) f(4,b,c,e,a,d)
|
||||
#define afterI3(f) f(3,a,b,e,c,d)
|
||||
#define afterI2(f) f(2,b,d,e,c,a)
|
||||
#define afterI1(f) f(1,a,b,c,e,d)
|
||||
#define afterI0(f) f(0,a,d,b,e,c)
|
||||
|
||||
// The instruction sequences for the S-box functions
|
||||
// come from Dag Arne Osvik's paper "Speeding up Serpent".
|
||||
|
||||
#define S0(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r3 ^= r0; \
|
||||
r4 = r1; \
|
||||
r1 &= r3; \
|
||||
r4 ^= r2; \
|
||||
r1 ^= r0; \
|
||||
r0 |= r3; \
|
||||
r0 ^= r4; \
|
||||
r4 ^= r3; \
|
||||
r3 ^= r2; \
|
||||
r2 |= r1; \
|
||||
r2 ^= r4; \
|
||||
r4 = ~r4; \
|
||||
r4 |= r1; \
|
||||
r1 ^= r3; \
|
||||
r1 ^= r4; \
|
||||
r3 |= r0; \
|
||||
r1 ^= r3; \
|
||||
r4 ^= r3; \
|
||||
}
|
||||
|
||||
#define I0(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r2 = ~r2; \
|
||||
r4 = r1; \
|
||||
r1 |= r0; \
|
||||
r4 = ~r4; \
|
||||
r1 ^= r2; \
|
||||
r2 |= r4; \
|
||||
r1 ^= r3; \
|
||||
r0 ^= r4; \
|
||||
r2 ^= r0; \
|
||||
r0 &= r3; \
|
||||
r4 ^= r0; \
|
||||
r0 |= r1; \
|
||||
r0 ^= r2; \
|
||||
r3 ^= r4; \
|
||||
r2 ^= r1; \
|
||||
r3 ^= r0; \
|
||||
r3 ^= r1; \
|
||||
r2 &= r3; \
|
||||
r4 ^= r2; \
|
||||
}
|
||||
|
||||
#define S1(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r0 = ~r0; \
|
||||
r2 = ~r2; \
|
||||
r4 = r0; \
|
||||
r0 &= r1; \
|
||||
r2 ^= r0; \
|
||||
r0 |= r3; \
|
||||
r3 ^= r2; \
|
||||
r1 ^= r0; \
|
||||
r0 ^= r4; \
|
||||
r4 |= r1; \
|
||||
r1 ^= r3; \
|
||||
r2 |= r0; \
|
||||
r2 &= r4; \
|
||||
r0 ^= r1; \
|
||||
r1 &= r2; \
|
||||
r1 ^= r0; \
|
||||
r0 &= r2; \
|
||||
r0 ^= r4; \
|
||||
}
|
||||
|
||||
#define I1(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r1; \
|
||||
r1 ^= r3; \
|
||||
r3 &= r1; \
|
||||
r4 ^= r2; \
|
||||
r3 ^= r0; \
|
||||
r0 |= r1; \
|
||||
r2 ^= r3; \
|
||||
r0 ^= r4; \
|
||||
r0 |= r2; \
|
||||
r1 ^= r3; \
|
||||
r0 ^= r1; \
|
||||
r1 |= r3; \
|
||||
r1 ^= r0; \
|
||||
r4 = ~r4; \
|
||||
r4 ^= r1; \
|
||||
r1 |= r0; \
|
||||
r1 ^= r0; \
|
||||
r1 |= r4; \
|
||||
r3 ^= r1; \
|
||||
}
|
||||
|
||||
#define S2(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r0; \
|
||||
r0 &= r2; \
|
||||
r0 ^= r3; \
|
||||
r2 ^= r1; \
|
||||
r2 ^= r0; \
|
||||
r3 |= r4; \
|
||||
r3 ^= r1; \
|
||||
r4 ^= r2; \
|
||||
r1 = r3; \
|
||||
r3 |= r4; \
|
||||
r3 ^= r0; \
|
||||
r0 &= r1; \
|
||||
r4 ^= r0; \
|
||||
r1 ^= r3; \
|
||||
r1 ^= r4; \
|
||||
r4 = ~r4; \
|
||||
}
|
||||
|
||||
#define I2(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r2 ^= r3; \
|
||||
r3 ^= r0; \
|
||||
r4 = r3; \
|
||||
r3 &= r2; \
|
||||
r3 ^= r1; \
|
||||
r1 |= r2; \
|
||||
r1 ^= r4; \
|
||||
r4 &= r3; \
|
||||
r2 ^= r3; \
|
||||
r4 &= r0; \
|
||||
r4 ^= r2; \
|
||||
r2 &= r1; \
|
||||
r2 |= r0; \
|
||||
r3 = ~r3; \
|
||||
r2 ^= r3; \
|
||||
r0 ^= r3; \
|
||||
r0 &= r1; \
|
||||
r3 ^= r4; \
|
||||
r3 ^= r0; \
|
||||
}
|
||||
|
||||
#define S3(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r0; \
|
||||
r0 |= r3; \
|
||||
r3 ^= r1; \
|
||||
r1 &= r4; \
|
||||
r4 ^= r2; \
|
||||
r2 ^= r3; \
|
||||
r3 &= r0; \
|
||||
r4 |= r1; \
|
||||
r3 ^= r4; \
|
||||
r0 ^= r1; \
|
||||
r4 &= r0; \
|
||||
r1 ^= r3; \
|
||||
r4 ^= r2; \
|
||||
r1 |= r0; \
|
||||
r1 ^= r2; \
|
||||
r0 ^= r3; \
|
||||
r2 = r1; \
|
||||
r1 |= r3; \
|
||||
r1 ^= r0; \
|
||||
}
|
||||
|
||||
#define I3(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r2; \
|
||||
r2 ^= r1; \
|
||||
r1 &= r2; \
|
||||
r1 ^= r0; \
|
||||
r0 &= r4; \
|
||||
r4 ^= r3; \
|
||||
r3 |= r1; \
|
||||
r3 ^= r2; \
|
||||
r0 ^= r4; \
|
||||
r2 ^= r0; \
|
||||
r0 |= r3; \
|
||||
r0 ^= r1; \
|
||||
r4 ^= r2; \
|
||||
r2 &= r3; \
|
||||
r1 |= r3; \
|
||||
r1 ^= r2; \
|
||||
r4 ^= r0; \
|
||||
r2 ^= r4; \
|
||||
}
|
||||
|
||||
#define S4(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r1 ^= r3; \
|
||||
r3 = ~r3; \
|
||||
r2 ^= r3; \
|
||||
r3 ^= r0; \
|
||||
r4 = r1; \
|
||||
r1 &= r3; \
|
||||
r1 ^= r2; \
|
||||
r4 ^= r3; \
|
||||
r0 ^= r4; \
|
||||
r2 &= r4; \
|
||||
r2 ^= r0; \
|
||||
r0 &= r1; \
|
||||
r3 ^= r0; \
|
||||
r4 |= r1; \
|
||||
r4 ^= r0; \
|
||||
r0 |= r3; \
|
||||
r0 ^= r2; \
|
||||
r2 &= r3; \
|
||||
r0 = ~r0; \
|
||||
r4 ^= r2; \
|
||||
}
|
||||
|
||||
#define I4(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r2; \
|
||||
r2 &= r3; \
|
||||
r2 ^= r1; \
|
||||
r1 |= r3; \
|
||||
r1 &= r0; \
|
||||
r4 ^= r2; \
|
||||
r4 ^= r1; \
|
||||
r1 &= r2; \
|
||||
r0 = ~r0; \
|
||||
r3 ^= r4; \
|
||||
r1 ^= r3; \
|
||||
r3 &= r0; \
|
||||
r3 ^= r2; \
|
||||
r0 ^= r1; \
|
||||
r2 &= r0; \
|
||||
r3 ^= r0; \
|
||||
r2 ^= r4; \
|
||||
r2 |= r3; \
|
||||
r3 ^= r0; \
|
||||
r2 ^= r1; \
|
||||
}
|
||||
|
||||
#define S5(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r0 ^= r1; \
|
||||
r1 ^= r3; \
|
||||
r3 = ~r3; \
|
||||
r4 = r1; \
|
||||
r1 &= r0; \
|
||||
r2 ^= r3; \
|
||||
r1 ^= r2; \
|
||||
r2 |= r4; \
|
||||
r4 ^= r3; \
|
||||
r3 &= r1; \
|
||||
r3 ^= r0; \
|
||||
r4 ^= r1; \
|
||||
r4 ^= r2; \
|
||||
r2 ^= r0; \
|
||||
r0 &= r3; \
|
||||
r2 = ~r2; \
|
||||
r0 ^= r4; \
|
||||
r4 |= r3; \
|
||||
r2 ^= r4; \
|
||||
}
|
||||
|
||||
#define I5(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r1 = ~r1; \
|
||||
r4 = r3; \
|
||||
r2 ^= r1; \
|
||||
r3 |= r0; \
|
||||
r3 ^= r2; \
|
||||
r2 |= r1; \
|
||||
r2 &= r0; \
|
||||
r4 ^= r3; \
|
||||
r2 ^= r4; \
|
||||
r4 |= r0; \
|
||||
r4 ^= r1; \
|
||||
r1 &= r2; \
|
||||
r1 ^= r3; \
|
||||
r4 ^= r2; \
|
||||
r3 &= r4; \
|
||||
r4 ^= r1; \
|
||||
r3 ^= r0; \
|
||||
r3 ^= r4; \
|
||||
r4 = ~r4; \
|
||||
}
|
||||
|
||||
#define S6(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r2 = ~r2; \
|
||||
r4 = r3; \
|
||||
r3 &= r0; \
|
||||
r0 ^= r4; \
|
||||
r3 ^= r2; \
|
||||
r2 |= r4; \
|
||||
r1 ^= r3; \
|
||||
r2 ^= r0; \
|
||||
r0 |= r1; \
|
||||
r2 ^= r1; \
|
||||
r4 ^= r0; \
|
||||
r0 |= r3; \
|
||||
r0 ^= r2; \
|
||||
r4 ^= r3; \
|
||||
r4 ^= r0; \
|
||||
r3 = ~r3; \
|
||||
r2 &= r4; \
|
||||
r2 ^= r3; \
|
||||
}
|
||||
|
||||
#define I6(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r0 ^= r2; \
|
||||
r4 = r2; \
|
||||
r2 &= r0; \
|
||||
r4 ^= r3; \
|
||||
r2 = ~r2; \
|
||||
r3 ^= r1; \
|
||||
r2 ^= r3; \
|
||||
r4 |= r0; \
|
||||
r0 ^= r2; \
|
||||
r3 ^= r4; \
|
||||
r4 ^= r1; \
|
||||
r1 &= r3; \
|
||||
r1 ^= r0; \
|
||||
r0 ^= r3; \
|
||||
r0 |= r2; \
|
||||
r3 ^= r1; \
|
||||
r4 ^= r0; \
|
||||
}
|
||||
|
||||
#define S7(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r2; \
|
||||
r2 &= r1; \
|
||||
r2 ^= r3; \
|
||||
r3 &= r1; \
|
||||
r4 ^= r2; \
|
||||
r2 ^= r1; \
|
||||
r1 ^= r0; \
|
||||
r0 |= r4; \
|
||||
r0 ^= r2; \
|
||||
r3 ^= r1; \
|
||||
r2 ^= r3; \
|
||||
r3 &= r0; \
|
||||
r3 ^= r4; \
|
||||
r4 ^= r2; \
|
||||
r2 &= r0; \
|
||||
r4 = ~r4; \
|
||||
r2 ^= r4; \
|
||||
r4 &= r0; \
|
||||
r1 ^= r3; \
|
||||
r4 ^= r1; \
|
||||
}
|
||||
|
||||
#define I7(i, r0, r1, r2, r3, r4) \
|
||||
{ \
|
||||
r4 = r2; \
|
||||
r2 ^= r0; \
|
||||
r0 &= r3; \
|
||||
r2 = ~r2; \
|
||||
r4 |= r3; \
|
||||
r3 ^= r1; \
|
||||
r1 |= r0; \
|
||||
r0 ^= r2; \
|
||||
r2 &= r4; \
|
||||
r1 ^= r2; \
|
||||
r2 ^= r0; \
|
||||
r0 |= r2; \
|
||||
r3 &= r4; \
|
||||
r0 ^= r3; \
|
||||
r4 ^= r1; \
|
||||
r3 ^= r4; \
|
||||
r4 |= r0; \
|
||||
r3 ^= r2; \
|
||||
r4 ^= r2; \
|
||||
}
|
||||
|
||||
// key xor
|
||||
#define KX(r, a, b, c, d, e) {\
|
||||
a ^= k[4 * r + 0]; \
|
||||
b ^= k[4 * r + 1]; \
|
||||
c ^= k[4 * r + 2]; \
|
||||
d ^= k[4 * r + 3];}
|
||||
|
||||
|
||||
#ifdef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
static void S0f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r3 ^= *r0;
|
||||
*r4 = *r1;
|
||||
*r1 &= *r3;
|
||||
*r4 ^= *r2;
|
||||
*r1 ^= *r0;
|
||||
*r0 |= *r3;
|
||||
*r0 ^= *r4;
|
||||
*r4 ^= *r3;
|
||||
*r3 ^= *r2;
|
||||
*r2 |= *r1;
|
||||
*r2 ^= *r4;
|
||||
*r4 = ~*r4;
|
||||
*r4 |= *r1;
|
||||
*r1 ^= *r3;
|
||||
*r1 ^= *r4;
|
||||
*r3 |= *r0;
|
||||
*r1 ^= *r3;
|
||||
*r4 ^= *r3;
|
||||
}
|
||||
|
||||
static void S1f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r0 = ~*r0;
|
||||
*r2 = ~*r2;
|
||||
*r4 = *r0;
|
||||
*r0 &= *r1;
|
||||
*r2 ^= *r0;
|
||||
*r0 |= *r3;
|
||||
*r3 ^= *r2;
|
||||
*r1 ^= *r0;
|
||||
*r0 ^= *r4;
|
||||
*r4 |= *r1;
|
||||
*r1 ^= *r3;
|
||||
*r2 |= *r0;
|
||||
*r2 &= *r4;
|
||||
*r0 ^= *r1;
|
||||
*r1 &= *r2;
|
||||
*r1 ^= *r0;
|
||||
*r0 &= *r2;
|
||||
*r0 ^= *r4;
|
||||
}
|
||||
|
||||
static void S2f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r4 = *r0;
|
||||
*r0 &= *r2;
|
||||
*r0 ^= *r3;
|
||||
*r2 ^= *r1;
|
||||
*r2 ^= *r0;
|
||||
*r3 |= *r4;
|
||||
*r3 ^= *r1;
|
||||
*r4 ^= *r2;
|
||||
*r1 = *r3;
|
||||
*r3 |= *r4;
|
||||
*r3 ^= *r0;
|
||||
*r0 &= *r1;
|
||||
*r4 ^= *r0;
|
||||
*r1 ^= *r3;
|
||||
*r1 ^= *r4;
|
||||
*r4 = ~*r4;
|
||||
}
|
||||
|
||||
static void S3f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r4 = *r0;
|
||||
*r0 |= *r3;
|
||||
*r3 ^= *r1;
|
||||
*r1 &= *r4;
|
||||
*r4 ^= *r2;
|
||||
*r2 ^= *r3;
|
||||
*r3 &= *r0;
|
||||
*r4 |= *r1;
|
||||
*r3 ^= *r4;
|
||||
*r0 ^= *r1;
|
||||
*r4 &= *r0;
|
||||
*r1 ^= *r3;
|
||||
*r4 ^= *r2;
|
||||
*r1 |= *r0;
|
||||
*r1 ^= *r2;
|
||||
*r0 ^= *r3;
|
||||
*r2 = *r1;
|
||||
*r1 |= *r3;
|
||||
*r1 ^= *r0;
|
||||
}
|
||||
|
||||
static void S4f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r1 ^= *r3;
|
||||
*r3 = ~*r3;
|
||||
*r2 ^= *r3;
|
||||
*r3 ^= *r0;
|
||||
*r4 = *r1;
|
||||
*r1 &= *r3;
|
||||
*r1 ^= *r2;
|
||||
*r4 ^= *r3;
|
||||
*r0 ^= *r4;
|
||||
*r2 &= *r4;
|
||||
*r2 ^= *r0;
|
||||
*r0 &= *r1;
|
||||
*r3 ^= *r0;
|
||||
*r4 |= *r1;
|
||||
*r4 ^= *r0;
|
||||
*r0 |= *r3;
|
||||
*r0 ^= *r2;
|
||||
*r2 &= *r3;
|
||||
*r0 = ~*r0;
|
||||
*r4 ^= *r2;
|
||||
}
|
||||
|
||||
static void S5f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r0 ^= *r1;
|
||||
*r1 ^= *r3;
|
||||
*r3 = ~*r3;
|
||||
*r4 = *r1;
|
||||
*r1 &= *r0;
|
||||
*r2 ^= *r3;
|
||||
*r1 ^= *r2;
|
||||
*r2 |= *r4;
|
||||
*r4 ^= *r3;
|
||||
*r3 &= *r1;
|
||||
*r3 ^= *r0;
|
||||
*r4 ^= *r1;
|
||||
*r4 ^= *r2;
|
||||
*r2 ^= *r0;
|
||||
*r0 &= *r3;
|
||||
*r2 = ~*r2;
|
||||
*r0 ^= *r4;
|
||||
*r4 |= *r3;
|
||||
*r2 ^= *r4;
|
||||
}
|
||||
|
||||
static void S6f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r2 = ~*r2;
|
||||
*r4 = *r3;
|
||||
*r3 &= *r0;
|
||||
*r0 ^= *r4;
|
||||
*r3 ^= *r2;
|
||||
*r2 |= *r4;
|
||||
*r1 ^= *r3;
|
||||
*r2 ^= *r0;
|
||||
*r0 |= *r1;
|
||||
*r2 ^= *r1;
|
||||
*r4 ^= *r0;
|
||||
*r0 |= *r3;
|
||||
*r0 ^= *r2;
|
||||
*r4 ^= *r3;
|
||||
*r4 ^= *r0;
|
||||
*r3 = ~*r3;
|
||||
*r2 &= *r4;
|
||||
*r2 ^= *r3;
|
||||
}
|
||||
|
||||
static void S7f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
|
||||
{
|
||||
*r4 = *r2;
|
||||
*r2 &= *r1;
|
||||
*r2 ^= *r3;
|
||||
*r3 &= *r1;
|
||||
*r4 ^= *r2;
|
||||
*r2 ^= *r1;
|
||||
*r1 ^= *r0;
|
||||
*r0 |= *r4;
|
||||
*r0 ^= *r2;
|
||||
*r3 ^= *r1;
|
||||
*r2 ^= *r3;
|
||||
*r3 &= *r0;
|
||||
*r3 ^= *r4;
|
||||
*r4 ^= *r2;
|
||||
*r2 &= *r0;
|
||||
*r4 = ~*r4;
|
||||
*r2 ^= *r4;
|
||||
*r4 &= *r0;
|
||||
*r1 ^= *r3;
|
||||
*r4 ^= *r1;
|
||||
}
|
||||
|
||||
static void KXf (const unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
|
||||
{
|
||||
*a ^= k[r];
|
||||
*b ^= k[r + 1];
|
||||
*c ^= k[r + 2];
|
||||
*d ^= k[r + 3];
|
||||
}
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
void serpent_set_key(const unsigned __int8 userKey[], int keylen, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a,b,c,d,e;
|
||||
unsigned __int32 *k = (unsigned __int32 *)ks;
|
||||
unsigned __int32 t;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < keylen / (int)sizeof(__int32); i++)
|
||||
k[i] = LE32(((unsigned __int32*)userKey)[i]);
|
||||
|
||||
if (keylen < 32)
|
||||
k[keylen/4] |= (unsigned __int32)1 << ((keylen%4)*8);
|
||||
|
||||
k += 8;
|
||||
t = k[-1];
|
||||
for (i = 0; i < 132; ++i)
|
||||
k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11);
|
||||
k -= 20;
|
||||
|
||||
#define LK(r, a, b, c, d, e) {\
|
||||
a = k[(8-r)*4 + 0]; \
|
||||
b = k[(8-r)*4 + 1]; \
|
||||
c = k[(8-r)*4 + 2]; \
|
||||
d = k[(8-r)*4 + 3];}
|
||||
|
||||
#define SK(r, a, b, c, d, e) {\
|
||||
k[(8-r)*4 + 4] = a; \
|
||||
k[(8-r)*4 + 5] = b; \
|
||||
k[(8-r)*4 + 6] = c; \
|
||||
k[(8-r)*4 + 7] = d;} \
|
||||
|
||||
for (i=0; i<4; i++)
|
||||
{
|
||||
afterS2(LK); afterS2(S3); afterS3(SK);
|
||||
afterS1(LK); afterS1(S2); afterS2(SK);
|
||||
afterS0(LK); afterS0(S1); afterS1(SK);
|
||||
beforeS0(LK); beforeS0(S0); afterS0(SK);
|
||||
k += 8*4;
|
||||
afterS6(LK); afterS6(S7); afterS7(SK);
|
||||
afterS5(LK); afterS5(S6); afterS6(SK);
|
||||
afterS4(LK); afterS4(S5); afterS5(SK);
|
||||
afterS3(LK); afterS3(S4); afterS4(SK);
|
||||
}
|
||||
afterS2(LK); afterS2(S3); afterS3(SK);
|
||||
}
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
static void LKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
|
||||
{
|
||||
*a = k[r];
|
||||
*b = k[r + 1];
|
||||
*c = k[r + 2];
|
||||
*d = k[r + 3];
|
||||
}
|
||||
|
||||
static void SKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
|
||||
{
|
||||
k[r + 4] = *a;
|
||||
k[r + 5] = *b;
|
||||
k[r + 6] = *c;
|
||||
k[r + 7] = *d;
|
||||
}
|
||||
|
||||
void serpent_set_key(const unsigned __int8 userKey[], int keylen, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a,b,c,d,e;
|
||||
unsigned __int32 *k = (unsigned __int32 *)ks;
|
||||
unsigned __int32 t;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < keylen / (int)sizeof(__int32); i++)
|
||||
k[i] = LE32(((unsigned __int32*)userKey)[i]);
|
||||
|
||||
if (keylen < 32)
|
||||
k[keylen/4] |= (unsigned __int32)1 << ((keylen%4)*8);
|
||||
|
||||
k += 8;
|
||||
t = k[-1];
|
||||
for (i = 0; i < 132; ++i)
|
||||
k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11);
|
||||
k -= 20;
|
||||
|
||||
for (i=0; i<4; i++)
|
||||
{
|
||||
LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c);
|
||||
LKf (k, 24, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); SKf (k, 20, &a, &e, &b, &d);
|
||||
LKf (k, 28, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); SKf (k, 24, &c, &b, &a, &e);
|
||||
LKf (k, 32, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); SKf (k, 28, &b, &e, &c, &a);
|
||||
k += 8*4;
|
||||
LKf (k, 4, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e); SKf (k, 0, &d, &e, &b, &a);
|
||||
LKf (k, 8, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); SKf (k, 4, &a, &c, &d, &b);
|
||||
LKf (k, 12, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); SKf (k, 8, &a, &c, &b, &e);
|
||||
LKf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); SKf (k, 12, &b, &a, &e, &c);
|
||||
}
|
||||
LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c);
|
||||
}
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a, b, c, d, e;
|
||||
unsigned int i=1;
|
||||
const unsigned __int32 *k = (unsigned __int32 *)ks + 8;
|
||||
unsigned __int32 *in = (unsigned __int32 *) inBlock;
|
||||
unsigned __int32 *out = (unsigned __int32 *) outBlock;
|
||||
|
||||
a = LE32(in[0]);
|
||||
b = LE32(in[1]);
|
||||
c = LE32(in[2]);
|
||||
d = LE32(in[3]);
|
||||
|
||||
do
|
||||
{
|
||||
beforeS0(KX); beforeS0(S0); afterS0(LT);
|
||||
afterS0(KX); afterS0(S1); afterS1(LT);
|
||||
afterS1(KX); afterS1(S2); afterS2(LT);
|
||||
afterS2(KX); afterS2(S3); afterS3(LT);
|
||||
afterS3(KX); afterS3(S4); afterS4(LT);
|
||||
afterS4(KX); afterS4(S5); afterS5(LT);
|
||||
afterS5(KX); afterS5(S6); afterS6(LT);
|
||||
afterS6(KX); afterS6(S7);
|
||||
|
||||
if (i == 4)
|
||||
break;
|
||||
|
||||
++i;
|
||||
c = b;
|
||||
b = e;
|
||||
e = d;
|
||||
d = a;
|
||||
a = e;
|
||||
k += 32;
|
||||
beforeS0(LT);
|
||||
}
|
||||
while (1);
|
||||
|
||||
afterS7(KX);
|
||||
|
||||
out[0] = LE32(d);
|
||||
out[1] = LE32(e);
|
||||
out[2] = LE32(b);
|
||||
out[3] = LE32(a);
|
||||
}
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
typedef unsigned __int32 uint32;
|
||||
|
||||
static void LTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d)
|
||||
{
|
||||
*a = rotlFixed(*a, 13);
|
||||
*c = rotlFixed(*c, 3);
|
||||
*d = rotlFixed(*d ^ *c ^ (*a << 3), 7);
|
||||
*b = rotlFixed(*b ^ *a ^ *c, 1);
|
||||
*a = rotlFixed(*a ^ *b ^ *d, 5);
|
||||
*c = rotlFixed(*c ^ *d ^ (*b << 7), 22);
|
||||
}
|
||||
|
||||
void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a, b, c, d, e;
|
||||
unsigned int i=1;
|
||||
const unsigned __int32 *k = (unsigned __int32 *)ks + 8;
|
||||
unsigned __int32 *in = (unsigned __int32 *) inBlock;
|
||||
unsigned __int32 *out = (unsigned __int32 *) outBlock;
|
||||
|
||||
a = LE32(in[0]);
|
||||
b = LE32(in[1]);
|
||||
c = LE32(in[2]);
|
||||
d = LE32(in[3]);
|
||||
|
||||
do
|
||||
{
|
||||
KXf (k, 0, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); LTf (&b, &e, &c, &a);
|
||||
KXf (k, 4, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); LTf (&c, &b, &a, &e);
|
||||
KXf (k, 8, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); LTf (&a, &e, &b, &d);
|
||||
KXf (k, 12, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); LTf (&e, &b, &d, &c);
|
||||
KXf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); LTf (&b, &a, &e, &c);
|
||||
KXf (k, 20, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); LTf (&a, &c, &b, &e);
|
||||
KXf (k, 24, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); LTf (&a, &c, &d, &b);
|
||||
KXf (k, 28, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e);
|
||||
|
||||
if (i == 4)
|
||||
break;
|
||||
|
||||
++i;
|
||||
c = b;
|
||||
b = e;
|
||||
e = d;
|
||||
d = a;
|
||||
a = e;
|
||||
k += 32;
|
||||
LTf (&a,&b,&c,&d);
|
||||
}
|
||||
while (1);
|
||||
|
||||
KXf (k, 32, &d, &e, &b, &a);
|
||||
|
||||
out[0] = LE32(d);
|
||||
out[1] = LE32(e);
|
||||
out[2] = LE32(b);
|
||||
out[3] = LE32(a);
|
||||
}
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_SERPENT)
|
||||
|
||||
void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a, b, c, d, e;
|
||||
const unsigned __int32 *k = (unsigned __int32 *)ks + 104;
|
||||
unsigned int i=4;
|
||||
unsigned __int32 *in = (unsigned __int32 *) inBlock;
|
||||
unsigned __int32 *out = (unsigned __int32 *) outBlock;
|
||||
|
||||
a = LE32(in[0]);
|
||||
b = LE32(in[1]);
|
||||
c = LE32(in[2]);
|
||||
d = LE32(in[3]);
|
||||
|
||||
beforeI7(KX);
|
||||
goto start;
|
||||
|
||||
do
|
||||
{
|
||||
c = b;
|
||||
b = d;
|
||||
d = e;
|
||||
k -= 32;
|
||||
beforeI7(ILT);
|
||||
start:
|
||||
beforeI7(I7); afterI7(KX);
|
||||
afterI7(ILT); afterI7(I6); afterI6(KX);
|
||||
afterI6(ILT); afterI6(I5); afterI5(KX);
|
||||
afterI5(ILT); afterI5(I4); afterI4(KX);
|
||||
afterI4(ILT); afterI4(I3); afterI3(KX);
|
||||
afterI3(ILT); afterI3(I2); afterI2(KX);
|
||||
afterI2(ILT); afterI2(I1); afterI1(KX);
|
||||
afterI1(ILT); afterI1(I0); afterI0(KX);
|
||||
}
|
||||
while (--i != 0);
|
||||
|
||||
out[0] = LE32(a);
|
||||
out[1] = LE32(d);
|
||||
out[2] = LE32(b);
|
||||
out[3] = LE32(e);
|
||||
}
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE && !TC_WINDOWS_BOOT_SERPENT
|
||||
|
||||
static void ILTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d)
|
||||
{
|
||||
*c = rotrFixed(*c, 22);
|
||||
*a = rotrFixed(*a, 5);
|
||||
*c ^= *d ^ (*b << 7);
|
||||
*a ^= *b ^ *d;
|
||||
*b = rotrFixed(*b, 1);
|
||||
*d = rotrFixed(*d, 7) ^ *c ^ (*a << 3);
|
||||
*b ^= *a ^ *c;
|
||||
*c = rotrFixed(*c, 3);
|
||||
*a = rotrFixed(*a, 13);
|
||||
}
|
||||
|
||||
void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
|
||||
{
|
||||
unsigned __int32 a, b, c, d, e;
|
||||
const unsigned __int32 *k = (unsigned __int32 *)ks + 104;
|
||||
unsigned int i=4;
|
||||
unsigned __int32 *in = (unsigned __int32 *) inBlock;
|
||||
unsigned __int32 *out = (unsigned __int32 *) outBlock;
|
||||
|
||||
a = LE32(in[0]);
|
||||
b = LE32(in[1]);
|
||||
c = LE32(in[2]);
|
||||
d = LE32(in[3]);
|
||||
|
||||
KXf (k, 32, &a, &b, &c, &d);
|
||||
goto start;
|
||||
|
||||
do
|
||||
{
|
||||
c = b;
|
||||
b = d;
|
||||
d = e;
|
||||
k -= 32;
|
||||
beforeI7(ILT);
|
||||
start:
|
||||
beforeI7(I7); KXf (k, 28, &d, &a, &b, &e);
|
||||
ILTf (&d, &a, &b, &e); afterI7(I6); KXf (k, 24, &a, &b, &c, &e);
|
||||
ILTf (&a, &b, &c, &e); afterI6(I5); KXf (k, 20, &b, &d, &e, &c);
|
||||
ILTf (&b, &d, &e, &c); afterI5(I4); KXf (k, 16, &b, &c, &e, &a);
|
||||
ILTf (&b, &c, &e, &a); afterI4(I3); KXf (k, 12, &a, &b, &e, &c);
|
||||
ILTf (&a, &b, &e, &c); afterI3(I2); KXf (k, 8, &b, &d, &e, &c);
|
||||
ILTf (&b, &d, &e, &c); afterI2(I1); KXf (k, 4, &a, &b, &c, &e);
|
||||
ILTf (&a, &b, &c, &e); afterI1(I0); KXf (k, 0, &a, &d, &b, &e);
|
||||
}
|
||||
while (--i != 0);
|
||||
|
||||
out[0] = LE32(a);
|
||||
out[1] = LE32(d);
|
||||
out[2] = LE32(b);
|
||||
out[3] = LE32(e);
|
||||
}
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE && !TC_WINDOWS_BOOT_SERPENT
|
||||
19
src/Crypto/Serpent.h
Normal file
19
src/Crypto/Serpent.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#ifndef HEADER_Crypto_Serpent
|
||||
#define HEADER_Crypto_Serpent
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
void serpent_set_key(const unsigned __int8 userKey[], int keylen, unsigned __int8 *ks);
|
||||
void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks);
|
||||
void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // HEADER_Crypto_Serpent
|
||||
282
src/Crypto/Sha1.c
Normal file
282
src/Crypto/Sha1.c
Normal file
@@ -0,0 +1,282 @@
|
||||
/* Deprecated/legacy */
|
||||
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 18/06/2004
|
||||
|
||||
This is a byte oriented version of SHA1 that operates on arrays of bytes
|
||||
stored in memory.
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
#include <stdlib.h> /* for _lrotl with VC++ */
|
||||
|
||||
#include "Sha1.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/*
|
||||
To obtain the highest speed on processors with 32-bit words, this code
|
||||
needs to determine the order in which bytes are packed into such words.
|
||||
The following block of code is an attempt to capture the most obvious
|
||||
ways in which various environemnts specify their endian definitions.
|
||||
It may well fail, in which case the definitions will need to be set by
|
||||
editing at the points marked **** EDIT HERE IF NECESSARY **** below.
|
||||
*/
|
||||
|
||||
/* PLATFORM SPECIFIC INCLUDES */
|
||||
|
||||
/* Original byte order detection removed */
|
||||
#include "../Common/Endian.h"
|
||||
|
||||
#define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
|
||||
#define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
|
||||
|
||||
#if BYTE_ORDER == LITTLE_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#if BYTE_ORDER == BIG_ENDIAN
|
||||
# define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 1 && defined(_MSC_VER) && !defined(_DEBUG)
|
||||
#define rotl32 _rotl
|
||||
#define rotr32 _rotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((sha1_32t*)p)[_i] = bswap_32(((sha1_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Discovered by Rich Schroeppel and Colin Plumb */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA1 context. Note */
|
||||
/* that this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream will go in */
|
||||
/* this buffer to the high end of 32-bit words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
#ifdef ARRAY
|
||||
#define q(v,n) v[n]
|
||||
#else
|
||||
#define q(v,n) v##n
|
||||
#endif
|
||||
|
||||
#define one_cycle(v,a,b,c,d,e,f,k,h) \
|
||||
q(v,e) += rotr32(q(v,a),27) + \
|
||||
f(q(v,b),q(v,c),q(v,d)) + k + h; \
|
||||
q(v,b) = rotr32(q(v,b), 2)
|
||||
|
||||
#define five_cycle(v,f,k,i) \
|
||||
one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \
|
||||
one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \
|
||||
one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \
|
||||
one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \
|
||||
one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
|
||||
|
||||
void sha1_compile(sha1_ctx ctx[1])
|
||||
{ sha1_32t *w = ctx->wbuf;
|
||||
|
||||
#ifdef ARRAY
|
||||
sha1_32t v[5];
|
||||
memcpy(v, ctx->hash, 5 * sizeof(sha1_32t));
|
||||
#else
|
||||
sha1_32t v0, v1, v2, v3, v4;
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4];
|
||||
#endif
|
||||
|
||||
#define hf(i) w[i]
|
||||
|
||||
five_cycle(v, ch, 0x5a827999, 0);
|
||||
five_cycle(v, ch, 0x5a827999, 5);
|
||||
five_cycle(v, ch, 0x5a827999, 10);
|
||||
one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
|
||||
|
||||
#undef hf
|
||||
#define hf(i) (w[(i) & 15] = rotl32( \
|
||||
w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
|
||||
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
|
||||
|
||||
one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
|
||||
one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
|
||||
one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
|
||||
one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
|
||||
|
||||
five_cycle(v, parity, 0x6ed9eba1, 20);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 25);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 30);
|
||||
five_cycle(v, parity, 0x6ed9eba1, 35);
|
||||
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 40);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 45);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 50);
|
||||
five_cycle(v, maj, 0x8f1bbcdc, 55);
|
||||
|
||||
five_cycle(v, parity, 0xca62c1d6, 60);
|
||||
five_cycle(v, parity, 0xca62c1d6, 65);
|
||||
five_cycle(v, parity, 0xca62c1d6, 70);
|
||||
five_cycle(v, parity, 0xca62c1d6, 75);
|
||||
|
||||
#ifdef ARRAY
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4];
|
||||
#else
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4;
|
||||
#endif
|
||||
}
|
||||
|
||||
void sha1_begin(sha1_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
ctx->hash[0] = 0x67452301;
|
||||
ctx->hash[1] = 0xefcdab89;
|
||||
ctx->hash[2] = 0x98badcfe;
|
||||
ctx->hash[3] = 0x10325476;
|
||||
ctx->hash[4] = 0xc3d2e1f0;
|
||||
}
|
||||
|
||||
/* SHA1 hash data in an array of bytes into hash buffer and */
|
||||
/* call the hash_compile function as required. */
|
||||
|
||||
void sha1_hash(const unsigned char data[], unsigned __int32 len, sha1_ctx ctx[1])
|
||||
{ sha1_32t pos = (sha1_32t)(ctx->count[0] & SHA1_MASK),
|
||||
space = SHA1_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks if possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
|
||||
bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
|
||||
sha1_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA1 final padding and digest calculation */
|
||||
|
||||
void sha1_end(unsigned char hval[], sha1_ctx ctx[1])
|
||||
{ sha1_32t i = (sha1_32t)(ctx->count[0] & SHA1_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3) >> 2);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
|
||||
ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space, pad and empty the buffer */
|
||||
if(i > SHA1_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha1_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha1_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
void sha1(unsigned char hval[], const unsigned char data[], unsigned __int32 len)
|
||||
{ sha1_ctx cx[1];
|
||||
|
||||
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
80
src/Crypto/Sha1.h
Normal file
80
src/Crypto/Sha1.h
Normal file
@@ -0,0 +1,80 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 26/08/2003
|
||||
*/
|
||||
|
||||
#ifndef _SHA1_H
|
||||
#define _SHA1_H
|
||||
|
||||
#include <limits.h>
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#define SHA1_BLOCK_SIZE 64
|
||||
#define SHA1_DIGEST_SIZE 20
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* define an unsigned 32-bit type */
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
typedef unsigned __int32 sha1_32t;
|
||||
#elif defined(ULONG_MAX) && ULONG_MAX == 0xfffffffful
|
||||
typedef unsigned __int32 sha1_32t;
|
||||
#elif defined(UINT_MAX) && UINT_MAX == 0xffffffff
|
||||
typedef unsigned int sha1_32t;
|
||||
#else
|
||||
# error Please define sha1_32t as an unsigned 32 bit type in sha1.h
|
||||
#endif
|
||||
|
||||
/* type to hold the SHA256 context */
|
||||
|
||||
typedef struct
|
||||
{ sha1_32t count[2];
|
||||
sha1_32t hash[5];
|
||||
sha1_32t wbuf[16];
|
||||
} sha1_ctx;
|
||||
|
||||
/* Note that these prototypes are the same for both bit and */
|
||||
/* byte oriented implementations. However the length fields */
|
||||
/* are in bytes or bits as appropriate for the version used */
|
||||
/* and bit sequences are input as arrays of bytes in which */
|
||||
/* bit sequences run from the most to the least significant */
|
||||
/* end of each byte */
|
||||
|
||||
void sha1_compile(sha1_ctx ctx[1]);
|
||||
|
||||
void sha1_begin(sha1_ctx ctx[1]);
|
||||
void sha1_hash(const unsigned char data[], unsigned __int32 len, sha1_ctx ctx[1]);
|
||||
void sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
|
||||
void sha1(unsigned char hval[], const unsigned char data[], unsigned __int32 len);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
770
src/Crypto/Sha2.c
Normal file
770
src/Crypto/Sha2.c
Normal file
@@ -0,0 +1,770 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
|
||||
This is a byte oriented version of SHA2 that operates on arrays of bytes
|
||||
stored in memory. This code implements sha256, sha384 and sha512 but the
|
||||
latter two functions rely on efficient 64-bit integer operations that
|
||||
may not be very efficient on 32-bit machines
|
||||
|
||||
The sha256 functions use a type 'sha256_ctx' to hold details of the
|
||||
current hash state and uses the following three calls:
|
||||
|
||||
void sha256_begin(sha256_ctx ctx[1])
|
||||
void sha256_hash(const unsigned char data[],
|
||||
unsigned long len, sha256_ctx ctx[1])
|
||||
void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
|
||||
|
||||
The first subroutine initialises a hash computation by setting up the
|
||||
context in the sha256_ctx context. The second subroutine hashes 8-bit
|
||||
bytes from array data[] into the hash state withinh sha256_ctx context,
|
||||
the number of bytes to be hashed being given by the the unsigned long
|
||||
integer len. The third subroutine completes the hash calculation and
|
||||
places the resulting digest value in the array of 8-bit bytes hval[].
|
||||
|
||||
The sha384 and sha512 functions are similar and use the interfaces:
|
||||
|
||||
void sha384_begin(sha384_ctx ctx[1]);
|
||||
void sha384_hash(const unsigned char data[],
|
||||
unsigned long len, sha384_ctx ctx[1]);
|
||||
void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
|
||||
void sha512_begin(sha512_ctx ctx[1]);
|
||||
void sha512_hash(const unsigned char data[],
|
||||
unsigned long len, sha512_ctx ctx[1]);
|
||||
void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
|
||||
In addition there is a function sha2 that can be used to call all these
|
||||
functions using a call with a hash length parameter as follows:
|
||||
|
||||
int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_hash(const unsigned char data[],
|
||||
unsigned long len, sha2_ctx ctx[1]);
|
||||
void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
|
||||
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
|
||||
on big-endian systems and for his assistance with corrections
|
||||
*/
|
||||
|
||||
#include "Common/Endian.h"
|
||||
#define PLATFORM_BYTE_ORDER BYTE_ORDER
|
||||
#define IS_LITTLE_ENDIAN LITTLE_ENDIAN
|
||||
|
||||
#if 0
|
||||
#define UNROLL_SHA2 /* for SHA2 loop unroll */
|
||||
#endif
|
||||
|
||||
#include <string.h> /* for memcpy() etc. */
|
||||
|
||||
#include "Sha2.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
||||
#pragma intrinsic(memcpy)
|
||||
#endif
|
||||
|
||||
#if 0 && defined(_MSC_VER)
|
||||
#define rotl32 _lrotl
|
||||
#define rotr32 _lrotr
|
||||
#else
|
||||
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
||||
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
||||
#endif
|
||||
|
||||
#if !defined(bswap_32)
|
||||
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
||||
#endif
|
||||
|
||||
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
||||
#define SWAP_BYTES
|
||||
#else
|
||||
#undef SWAP_BYTES
|
||||
#endif
|
||||
|
||||
#if 0
|
||||
|
||||
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
||||
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
||||
|
||||
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
|
||||
|
||||
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
||||
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
||||
|
||||
#endif
|
||||
|
||||
/* round transforms for SHA256 and SHA512 compression functions */
|
||||
|
||||
#define vf(n,i) v[(n - i) & 7]
|
||||
|
||||
#define hf(i) (p[i & 15] += \
|
||||
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
||||
|
||||
#define v_cycle(i,j) \
|
||||
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
|
||||
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
||||
vf(3,i) += vf(7,i); \
|
||||
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
||||
|
||||
#if defined(SHA_224) || defined(SHA_256)
|
||||
|
||||
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_32(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_32(p,n)
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
||||
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
||||
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
||||
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
||||
#define k_0 k256
|
||||
|
||||
/* rotated SHA256 round definition. Rather than swapping variables as in */
|
||||
/* FIPS-180, different variables are 'rotated' on each round, returning */
|
||||
/* to their starting positions every eight rounds */
|
||||
|
||||
#define q(n) v##n
|
||||
|
||||
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
|
||||
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
|
||||
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
|
||||
|
||||
/* SHA256 mixing data */
|
||||
|
||||
const uint_32t k256[64] =
|
||||
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
|
||||
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
|
||||
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
|
||||
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
|
||||
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
|
||||
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
|
||||
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
|
||||
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
|
||||
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
|
||||
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
|
||||
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
|
||||
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
|
||||
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
|
||||
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
|
||||
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
|
||||
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
|
||||
};
|
||||
|
||||
/* Compile 64 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
|
||||
{
|
||||
#if !defined(UNROLL_SHA2)
|
||||
|
||||
uint_32t j, *p = ctx->wbuf, v[8];
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
|
||||
|
||||
for(j = 0; j < 64; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
|
||||
#else
|
||||
|
||||
uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
|
||||
|
||||
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
||||
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
||||
v4 = ctx->hash[4]; v5 = ctx->hash[5];
|
||||
v6 = ctx->hash[6]; v7 = ctx->hash[7];
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
|
||||
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
|
||||
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
|
||||
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
|
||||
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
|
||||
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
|
||||
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
|
||||
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
|
||||
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
|
||||
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
|
||||
|
||||
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
||||
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
||||
ctx->hash[4] += v4; ctx->hash[5] += v5;
|
||||
ctx->hash[6] += v6; ctx->hash[7] += v7;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* SHA256 hash data in an array of bytes into hash buffer */
|
||||
/* and call the hash_compile function as required. */
|
||||
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
|
||||
space = SHA256_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks while possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
|
||||
bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
|
||||
sha256_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA256 Final padding and digest calculation */
|
||||
|
||||
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_32(ctx->wbuf, (i + 3) >> 2)
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
|
||||
ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
|
||||
|
||||
/* we need 9 or more empty positions, one for the padding byte */
|
||||
/* (above) and eight for the length count. If there is not */
|
||||
/* enough space pad and empty the buffer */
|
||||
if(i > SHA256_BLOCK_SIZE - 9)
|
||||
{
|
||||
if(i < 60) ctx->wbuf[15] = 0;
|
||||
sha256_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else /* compute a word index for the empty buffer positions */
|
||||
i = (i >> 2) + 1;
|
||||
|
||||
while(i < 14) /* and zero pad all but last two positions */
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 32-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 32-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha256_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* mislaigned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_224)
|
||||
|
||||
const uint_32t i224[8] =
|
||||
{
|
||||
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
|
||||
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha224_ctx cx[1];
|
||||
|
||||
sha224_begin(cx);
|
||||
sha224_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_256)
|
||||
|
||||
const uint_32t i256[8] =
|
||||
{
|
||||
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
|
||||
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
|
||||
};
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
|
||||
{
|
||||
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha256_ctx cx[1];
|
||||
|
||||
sha256_begin(cx);
|
||||
sha256_hash(data, len, cx);
|
||||
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384) || defined(SHA_512)
|
||||
|
||||
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
|
||||
|
||||
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
|
||||
|
||||
#if !defined(bswap_64)
|
||||
#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
|
||||
#endif
|
||||
|
||||
#if defined(SWAP_BYTES)
|
||||
#define bsw_64(p,n) \
|
||||
{ int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
|
||||
#else
|
||||
#define bsw_64(p,n)
|
||||
#endif
|
||||
|
||||
/* SHA512 mixing function definitions */
|
||||
|
||||
#ifdef s_0
|
||||
# undef s_0
|
||||
# undef s_1
|
||||
# undef g_0
|
||||
# undef g_1
|
||||
# undef k_0
|
||||
#endif
|
||||
|
||||
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
|
||||
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
|
||||
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
|
||||
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
|
||||
#define k_0 k512
|
||||
|
||||
/* SHA384/SHA512 mixing data */
|
||||
|
||||
const uint_64t k512[80] =
|
||||
{
|
||||
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
|
||||
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
|
||||
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
|
||||
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
|
||||
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
|
||||
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
|
||||
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
|
||||
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
|
||||
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
|
||||
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
|
||||
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
|
||||
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
|
||||
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
|
||||
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
|
||||
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
|
||||
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
|
||||
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
|
||||
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
|
||||
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
|
||||
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
|
||||
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
|
||||
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
|
||||
li_64(d192e819d6ef5218), li_64(d69906245565a910),
|
||||
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
|
||||
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
|
||||
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
|
||||
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
|
||||
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
|
||||
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
|
||||
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
|
||||
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
|
||||
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
|
||||
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
|
||||
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
|
||||
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
|
||||
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
|
||||
li_64(28db77f523047d84), li_64(32caab7b40c72493),
|
||||
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
|
||||
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
|
||||
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
|
||||
};
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA384/512 digest */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is such that low address bytes */
|
||||
/* in the ORIGINAL byte stream will go into the high end of */
|
||||
/* words on BOTH big and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
|
||||
{ uint_64t v[8], *p = ctx->wbuf;
|
||||
uint_32t j;
|
||||
|
||||
memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
|
||||
|
||||
for(j = 0; j < 80; j += 16)
|
||||
{
|
||||
v_cycle( 0, j); v_cycle( 1, j);
|
||||
v_cycle( 2, j); v_cycle( 3, j);
|
||||
v_cycle( 4, j); v_cycle( 5, j);
|
||||
v_cycle( 6, j); v_cycle( 7, j);
|
||||
v_cycle( 8, j); v_cycle( 9, j);
|
||||
v_cycle(10, j); v_cycle(11, j);
|
||||
v_cycle(12, j); v_cycle(13, j);
|
||||
v_cycle(14, j); v_cycle(15, j);
|
||||
}
|
||||
|
||||
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
||||
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
||||
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
||||
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
||||
}
|
||||
|
||||
/* Compile 128 bytes of hash data into SHA256 digest value */
|
||||
/* NOTE: this routine assumes that the byte order in the */
|
||||
/* ctx->wbuf[] at this point is in such an order that low */
|
||||
/* address bytes in the ORIGINAL byte stream placed in this */
|
||||
/* buffer will now go to the high end of words on BOTH big */
|
||||
/* and little endian systems */
|
||||
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
|
||||
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
|
||||
space = SHA512_BLOCK_SIZE - pos;
|
||||
const unsigned char *sp = data;
|
||||
|
||||
if((ctx->count[0] += len) < len)
|
||||
++(ctx->count[1]);
|
||||
|
||||
while(len >= space) /* tranfer whole blocks while possible */
|
||||
{
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
|
||||
sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
|
||||
bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
|
||||
sha512_compile(ctx);
|
||||
}
|
||||
|
||||
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
|
||||
}
|
||||
|
||||
/* SHA384/512 Final padding and digest calculation */
|
||||
|
||||
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
|
||||
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
|
||||
|
||||
/* put bytes in the buffer in an order in which references to */
|
||||
/* 32-bit words will put bytes with lower addresses into the */
|
||||
/* top of 32 bit words on BOTH big and little endian machines */
|
||||
bsw_64(ctx->wbuf, (i + 7) >> 3);
|
||||
|
||||
/* we now need to mask valid bytes and add the padding which is */
|
||||
/* a single 1 bit and as many zero bits as necessary. Note that */
|
||||
/* we can always add the first padding byte here because the */
|
||||
/* buffer always has at least one empty slot */
|
||||
ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
|
||||
ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
|
||||
|
||||
/* we need 17 or more empty byte positions, one for the padding */
|
||||
/* byte (above) and sixteen for the length count. If there is */
|
||||
/* not enough space pad and empty the buffer */
|
||||
if(i > SHA512_BLOCK_SIZE - 17)
|
||||
{
|
||||
if(i < 120) ctx->wbuf[15] = 0;
|
||||
sha512_compile(ctx);
|
||||
i = 0;
|
||||
}
|
||||
else
|
||||
i = (i >> 3) + 1;
|
||||
|
||||
while(i < 14)
|
||||
ctx->wbuf[i++] = 0;
|
||||
|
||||
/* the following 64-bit length fields are assembled in the */
|
||||
/* wrong byte order on little endian machines but this is */
|
||||
/* corrected later since they are only ever used as 64-bit */
|
||||
/* word values. */
|
||||
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
|
||||
ctx->wbuf[15] = ctx->count[0] << 3;
|
||||
sha512_compile(ctx);
|
||||
|
||||
/* extract the hash value as bytes in case the hash buffer is */
|
||||
/* misaligned for 32-bit words */
|
||||
for(i = 0; i < hlen; ++i)
|
||||
hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_384)
|
||||
|
||||
/* SHA384 initialisation data */
|
||||
|
||||
const uint_64t i384[80] =
|
||||
{
|
||||
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
|
||||
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
|
||||
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
|
||||
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
|
||||
};
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha384_ctx cx[1];
|
||||
|
||||
sha384_begin(cx);
|
||||
sha384_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_512)
|
||||
|
||||
/* SHA512 initialisation data */
|
||||
|
||||
const uint_64t i512[80] =
|
||||
{
|
||||
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
|
||||
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
|
||||
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
|
||||
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
|
||||
};
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
|
||||
{
|
||||
ctx->count[0] = ctx->count[1] = 0;
|
||||
memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
|
||||
}
|
||||
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
|
||||
{
|
||||
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
|
||||
{ sha512_ctx cx[1];
|
||||
|
||||
sha512_begin(cx);
|
||||
sha512_hash(data, len, cx);
|
||||
sha_end2(hval, cx, SHA512_DIGEST_SIZE);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(SHA_2)
|
||||
|
||||
#define CTX_224(x) ((x)->uu->ctx256)
|
||||
#define CTX_256(x) ((x)->uu->ctx256)
|
||||
#define CTX_384(x) ((x)->uu->ctx512)
|
||||
#define CTX_512(x) ((x)->uu->ctx512)
|
||||
|
||||
/* SHA2 initialisation */
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 224:
|
||||
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i224, 32);
|
||||
ctx->sha2_len = 28; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 256:
|
||||
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
||||
memcpy(CTX_256(ctx)->hash, i256, 32);
|
||||
ctx->sha2_len = 32; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 384:
|
||||
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
|
||||
memcpy(CTX_384(ctx)->hash, i384, 64);
|
||||
ctx->sha2_len = 48; return EXIT_SUCCESS;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 512:
|
||||
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
|
||||
memcpy(CTX_512(ctx)->hash, i512, 64);
|
||||
ctx->sha2_len = 64; return EXIT_SUCCESS;
|
||||
#endif
|
||||
default: return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
|
||||
{
|
||||
switch(ctx->sha2_len)
|
||||
{
|
||||
#if defined(SHA_224)
|
||||
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_256)
|
||||
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_384)
|
||||
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
|
||||
#endif
|
||||
#if defined(SHA_512)
|
||||
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size,
|
||||
const unsigned char data[], unsigned long len)
|
||||
{ sha2_ctx cx[1];
|
||||
|
||||
if(sha2_begin(size, cx) == EXIT_SUCCESS)
|
||||
{
|
||||
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
|
||||
}
|
||||
else
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
155
src/Crypto/Sha2.h
Normal file
155
src/Crypto/Sha2.h
Normal file
@@ -0,0 +1,155 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
Issue Date: 01/08/2005
|
||||
*/
|
||||
|
||||
#ifndef _SHA2_H
|
||||
#define _SHA2_H
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
#include "Common/Endian.h"
|
||||
|
||||
#define SHA_64BIT
|
||||
|
||||
/* define the hash functions that you need */
|
||||
#define SHA_2 /* for dynamic hash length */
|
||||
#define SHA_224
|
||||
#define SHA_256
|
||||
#ifdef SHA_64BIT
|
||||
# define SHA_384
|
||||
# define SHA_512
|
||||
# define NEED_UINT_64T
|
||||
#endif
|
||||
|
||||
#ifndef EXIT_SUCCESS
|
||||
#define EXIT_SUCCESS 0
|
||||
#define EXIT_FAILURE 1
|
||||
#endif
|
||||
|
||||
#define li_64(h) 0x##h##ull
|
||||
|
||||
#define VOID_RETURN void
|
||||
#define INT_RETURN int
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
/* Note that the following function prototypes are the same */
|
||||
/* for both the bit and byte oriented implementations. But */
|
||||
/* the length fields are in bytes or bits as is appropriate */
|
||||
/* for the version used. Bit sequences are arrays of bytes */
|
||||
/* in which bit sequence indexes increase from the most to */
|
||||
/* the least significant end of each byte */
|
||||
|
||||
#define SHA224_DIGEST_SIZE 28
|
||||
#define SHA224_BLOCK_SIZE 64
|
||||
#define SHA256_DIGEST_SIZE 32
|
||||
#define SHA256_BLOCK_SIZE 64
|
||||
|
||||
/* type to hold the SHA256 (and SHA224) context */
|
||||
|
||||
typedef struct
|
||||
{ uint_32t count[2];
|
||||
uint_32t hash[8];
|
||||
uint_32t wbuf[16];
|
||||
} sha256_ctx;
|
||||
|
||||
typedef sha256_ctx sha224_ctx;
|
||||
|
||||
VOID_RETURN sha256_compile(sha256_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha224_begin(sha224_ctx ctx[1]);
|
||||
#define sha224_hash sha256_hash
|
||||
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]);
|
||||
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha256_begin(sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]);
|
||||
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
#ifndef SHA_64BIT
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
} uu[1];
|
||||
uint_32t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
#define SHA2_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE
|
||||
|
||||
#else
|
||||
|
||||
#define SHA384_DIGEST_SIZE 48
|
||||
#define SHA384_BLOCK_SIZE 128
|
||||
#define SHA512_DIGEST_SIZE 64
|
||||
#define SHA512_BLOCK_SIZE 128
|
||||
#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
|
||||
|
||||
/* type to hold the SHA384 (and SHA512) context */
|
||||
|
||||
typedef struct
|
||||
{ uint_64t count[2];
|
||||
uint_64t hash[8];
|
||||
uint_64t wbuf[16];
|
||||
} sha512_ctx;
|
||||
|
||||
typedef sha512_ctx sha384_ctx;
|
||||
|
||||
typedef struct
|
||||
{ union
|
||||
{ sha256_ctx ctx256[1];
|
||||
sha512_ctx ctx512[1];
|
||||
} uu[1];
|
||||
uint_32t sha2_len;
|
||||
} sha2_ctx;
|
||||
|
||||
VOID_RETURN sha512_compile(sha512_ctx ctx[1]);
|
||||
|
||||
VOID_RETURN sha384_begin(sha384_ctx ctx[1]);
|
||||
#define sha384_hash sha512_hash
|
||||
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
||||
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
VOID_RETURN sha512_begin(sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
||||
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len);
|
||||
|
||||
INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]);
|
||||
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
||||
INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len);
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
23
src/Crypto/Sources
Normal file
23
src/Crypto/Sources
Normal file
@@ -0,0 +1,23 @@
|
||||
TARGETNAME=Crypto
|
||||
TARGETTYPE=DRIVER_LIBRARY
|
||||
|
||||
INCLUDES = ..
|
||||
|
||||
NTTARGETFILES = \
|
||||
"$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj" \
|
||||
"$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj"
|
||||
|
||||
SOURCES = \
|
||||
Aes_$(TC_ARCH).asm \
|
||||
Aes_hw_cpu.asm \
|
||||
Aeskey.c \
|
||||
Aestab.c \
|
||||
Blowfish.c \
|
||||
Cast.c \
|
||||
Des.c \
|
||||
Rmd160.c \
|
||||
Serpent.c \
|
||||
Sha1.c \
|
||||
Sha2.c \
|
||||
Twofish.c \
|
||||
Whirlpool.c
|
||||
548
src/Crypto/Twofish.c
Normal file
548
src/Crypto/Twofish.c
Normal file
@@ -0,0 +1,548 @@
|
||||
/*
|
||||
---------------------------------------------------------------------------
|
||||
Copyright (c) 1999, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
||||
|
||||
LICENSE TERMS
|
||||
|
||||
The free distribution and use of this software is allowed (with or without
|
||||
changes) provided that:
|
||||
|
||||
1. source code distributions include the above copyright notice, this
|
||||
list of conditions and the following disclaimer;
|
||||
|
||||
2. binary distributions include the above copyright notice, this list
|
||||
of conditions and the following disclaimer in their documentation;
|
||||
|
||||
3. the name of the copyright holder is not used to endorse products
|
||||
built using this software without specific written permission.
|
||||
|
||||
DISCLAIMER
|
||||
|
||||
This software is provided 'as is' with no explicit or implied warranties
|
||||
in respect of its properties, including, but not limited to, correctness
|
||||
and/or fitness for purpose.
|
||||
---------------------------------------------------------------------------
|
||||
|
||||
My thanks to Doug Whiting and Niels Ferguson for comments that led
|
||||
to improvements in this implementation.
|
||||
|
||||
Issue Date: 14th January 1999
|
||||
*/
|
||||
|
||||
/* Adapted for TrueCrypt */
|
||||
|
||||
|
||||
#ifdef TC_WINDOWS_BOOT
|
||||
#pragma optimize ("tl", on)
|
||||
#endif
|
||||
|
||||
#include "Twofish.h"
|
||||
#include "Common/Endian.h"
|
||||
|
||||
#define Q_TABLES
|
||||
#define M_TABLE
|
||||
|
||||
#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
|
||||
# define MK_TABLE
|
||||
# define ONE_STEP
|
||||
#endif
|
||||
|
||||
/* finite field arithmetic for GF(2**8) with the modular */
|
||||
/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169) */
|
||||
|
||||
#define G_M 0x0169
|
||||
|
||||
static u1byte tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) };
|
||||
static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };
|
||||
|
||||
#define ffm_01(x) (x)
|
||||
#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3])
|
||||
#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3])
|
||||
|
||||
static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
|
||||
static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };
|
||||
|
||||
static u1byte qt0[2][16] =
|
||||
{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
|
||||
{ 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
|
||||
};
|
||||
|
||||
static u1byte qt1[2][16] =
|
||||
{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
|
||||
{ 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
|
||||
};
|
||||
|
||||
static u1byte qt2[2][16] =
|
||||
{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
|
||||
{ 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
|
||||
};
|
||||
|
||||
static u1byte qt3[2][16] =
|
||||
{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
|
||||
{ 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
|
||||
};
|
||||
|
||||
static u1byte qp(const u4byte n, const u1byte x)
|
||||
{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;
|
||||
|
||||
a0 = x >> 4; b0 = x & 15;
|
||||
a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0];
|
||||
a2 = qt0[n][a1]; b2 = qt1[n][b1];
|
||||
a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2];
|
||||
a4 = qt2[n][a3]; b4 = qt3[n][b3];
|
||||
return (b4 << 4) | a4;
|
||||
};
|
||||
|
||||
#ifdef Q_TABLES
|
||||
|
||||
static u4byte qt_gen = 0;
|
||||
static u1byte q_tab[2][256];
|
||||
|
||||
#define q(n,x) q_tab[n][x]
|
||||
|
||||
static void gen_qtab(void)
|
||||
{ u4byte i;
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
q(0,i) = qp(0, (u1byte)i);
|
||||
q(1,i) = qp(1, (u1byte)i);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
#define q(n,x) qp(n, x)
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef M_TABLE
|
||||
|
||||
static u4byte mt_gen = 0;
|
||||
static u4byte m_tab[4][256];
|
||||
|
||||
static void gen_mtab(void)
|
||||
{ u4byte i, f01, f5b, fef;
|
||||
|
||||
for(i = 0; i < 256; ++i)
|
||||
{
|
||||
f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
|
||||
m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
|
||||
m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);
|
||||
|
||||
f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
|
||||
m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);
|
||||
m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
|
||||
}
|
||||
};
|
||||
|
||||
#define mds(n,x) m_tab[n][x]
|
||||
|
||||
#else
|
||||
|
||||
#define fm_00 ffm_01
|
||||
#define fm_10 ffm_5b
|
||||
#define fm_20 ffm_ef
|
||||
#define fm_30 ffm_ef
|
||||
#define q_0(x) q(1,x)
|
||||
|
||||
#define fm_01 ffm_ef
|
||||
#define fm_11 ffm_ef
|
||||
#define fm_21 ffm_5b
|
||||
#define fm_31 ffm_01
|
||||
#define q_1(x) q(0,x)
|
||||
|
||||
#define fm_02 ffm_5b
|
||||
#define fm_12 ffm_ef
|
||||
#define fm_22 ffm_01
|
||||
#define fm_32 ffm_ef
|
||||
#define q_2(x) q(1,x)
|
||||
|
||||
#define fm_03 ffm_5b
|
||||
#define fm_13 ffm_01
|
||||
#define fm_23 ffm_ef
|
||||
#define fm_33 ffm_5b
|
||||
#define q_3(x) q(0,x)
|
||||
|
||||
#define f_0(n,x) ((u4byte)fm_0##n(x))
|
||||
#define f_1(n,x) ((u4byte)fm_1##n(x) << 8)
|
||||
#define f_2(n,x) ((u4byte)fm_2##n(x) << 16)
|
||||
#define f_3(n,x) ((u4byte)fm_3##n(x) << 24)
|
||||
|
||||
#define mds(n,x) f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x))
|
||||
|
||||
#endif
|
||||
|
||||
static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[])
|
||||
{ u4byte b0, b1, b2, b3;
|
||||
|
||||
#ifndef M_TABLE
|
||||
u4byte m5b_b0, m5b_b1, m5b_b2, m5b_b3;
|
||||
u4byte mef_b0, mef_b1, mef_b2, mef_b3;
|
||||
#endif
|
||||
|
||||
b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3);
|
||||
|
||||
switch(instance->k_len)
|
||||
{
|
||||
case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0);
|
||||
b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1);
|
||||
b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2);
|
||||
b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3);
|
||||
case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0);
|
||||
b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1);
|
||||
b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2);
|
||||
b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3);
|
||||
case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0);
|
||||
b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1);
|
||||
b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2);
|
||||
b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3);
|
||||
}
|
||||
#ifdef M_TABLE
|
||||
|
||||
return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3);
|
||||
|
||||
#else
|
||||
|
||||
b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3);
|
||||
m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3);
|
||||
mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3);
|
||||
b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2;
|
||||
b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3;
|
||||
|
||||
return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24);
|
||||
|
||||
#endif
|
||||
};
|
||||
|
||||
#ifdef MK_TABLE
|
||||
|
||||
#ifdef ONE_STEP
|
||||
//u4byte mk_tab[4][256];
|
||||
#else
|
||||
static u1byte sb[4][256];
|
||||
#endif
|
||||
|
||||
#define q20(x) q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
|
||||
#define q21(x) q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
|
||||
#define q22(x) q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
|
||||
#define q23(x) q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
|
||||
|
||||
#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
|
||||
#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
|
||||
#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
|
||||
#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
|
||||
|
||||
#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
|
||||
#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
|
||||
#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
|
||||
#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
|
||||
|
||||
static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
|
||||
{ u4byte i;
|
||||
u1byte by;
|
||||
|
||||
u4byte *mk_tab = instance->mk_tab;
|
||||
|
||||
switch(instance->k_len)
|
||||
{
|
||||
case 2: for(i = 0; i < 256; ++i)
|
||||
{
|
||||
by = (u1byte)i;
|
||||
#ifdef ONE_STEP
|
||||
mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
|
||||
#else
|
||||
sb[0][i] = q20(by); sb[1][i] = q21(by);
|
||||
sb[2][i] = q22(by); sb[3][i] = q23(by);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
case 3: for(i = 0; i < 256; ++i)
|
||||
{
|
||||
by = (u1byte)i;
|
||||
#ifdef ONE_STEP
|
||||
mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
|
||||
#else
|
||||
sb[0][i] = q30(by); sb[1][i] = q31(by);
|
||||
sb[2][i] = q32(by); sb[3][i] = q33(by);
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
case 4: for(i = 0; i < 256; ++i)
|
||||
{
|
||||
by = (u1byte)i;
|
||||
#ifdef ONE_STEP
|
||||
mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
|
||||
mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
|
||||
#else
|
||||
sb[0][i] = q40(by); sb[1][i] = q41(by);
|
||||
sb[2][i] = q42(by); sb[3][i] = q43(by);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
# ifdef ONE_STEP
|
||||
# define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \
|
||||
^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] )
|
||||
# define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \
|
||||
^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] )
|
||||
|
||||
|
||||
# else
|
||||
# define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \
|
||||
^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) )
|
||||
# define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \
|
||||
^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) )
|
||||
# endif
|
||||
|
||||
#else
|
||||
|
||||
#define g0_fun(x) h_fun(instance, x, instance->s_key)
|
||||
#define g1_fun(x) h_fun(instance, rotl(x,8), instance->s_key)
|
||||
|
||||
#endif
|
||||
|
||||
/* The (12,8) Reed Soloman code has the generator polynomial
|
||||
|
||||
g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1
|
||||
|
||||
where the coefficients are in the finite field GF(2^8) with a
|
||||
modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
|
||||
remainder we have to start with a 12th order polynomial with our
|
||||
eight input bytes as the coefficients of the 4th to 11th terms.
|
||||
That is:
|
||||
|
||||
m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
|
||||
|
||||
We then multiply the generator polynomial by m[7] * x^7 and subtract
|
||||
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
|
||||
artihmetic on the coefficients is done in GF(2^8). We then multiply
|
||||
the generator polynomial by x^6 * coeff(x^10) and use this to remove
|
||||
the x^10 term. We carry on in this way until the x^4 term is removed
|
||||
so that we are left with:
|
||||
|
||||
r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
|
||||
|
||||
which give the resulting 4 bytes of the remainder. This is equivalent
|
||||
to the matrix multiplication in the Twofish description but much faster
|
||||
to implement.
|
||||
|
||||
*/
|
||||
|
||||
#define G_MOD 0x0000014d
|
||||
|
||||
static u4byte mds_rem(u4byte p0, u4byte p1)
|
||||
{ u4byte i, t, u;
|
||||
|
||||
for(i = 0; i < 8; ++i)
|
||||
{
|
||||
t = p1 >> 24; // get most significant coefficient
|
||||
|
||||
p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up
|
||||
|
||||
// multiply t by a (the primitive element - i.e. left shift)
|
||||
|
||||
u = (t << 1);
|
||||
|
||||
if(t & 0x80) // subtract modular polynomial on overflow
|
||||
|
||||
u ^= G_MOD;
|
||||
|
||||
p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
|
||||
|
||||
u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
|
||||
|
||||
if(t & 0x01) // add the modular polynomial on underflow
|
||||
|
||||
u ^= G_MOD >> 1;
|
||||
|
||||
p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
|
||||
}
|
||||
|
||||
return p1;
|
||||
};
|
||||
|
||||
/* initialise the key schedule from the user supplied key */
|
||||
|
||||
u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[], const u4byte key_len)
|
||||
{ u4byte i, a, b, me_key[4], mo_key[4];
|
||||
u4byte *l_key, *s_key;
|
||||
|
||||
l_key = instance->l_key;
|
||||
s_key = instance->s_key;
|
||||
|
||||
#ifdef Q_TABLES
|
||||
if(!qt_gen)
|
||||
{
|
||||
gen_qtab(); qt_gen = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef M_TABLE
|
||||
if(!mt_gen)
|
||||
{
|
||||
gen_mtab(); mt_gen = 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
instance->k_len = key_len / 64; /* 2, 3 or 4 */
|
||||
|
||||
for(i = 0; i < instance->k_len; ++i)
|
||||
{
|
||||
a = LE32(in_key[i + i]); me_key[i] = a;
|
||||
b = LE32(in_key[i + i + 1]); mo_key[i] = b;
|
||||
s_key[instance->k_len - i - 1] = mds_rem(a, b);
|
||||
}
|
||||
|
||||
for(i = 0; i < 40; i += 2)
|
||||
{
|
||||
a = 0x01010101 * i; b = a + 0x01010101;
|
||||
a = h_fun(instance, a, me_key);
|
||||
b = rotl(h_fun(instance, b, mo_key), 8);
|
||||
l_key[i] = a + b;
|
||||
l_key[i + 1] = rotl(a + 2 * b, 9);
|
||||
}
|
||||
|
||||
#ifdef MK_TABLE
|
||||
gen_mk_tab(instance, s_key);
|
||||
#endif
|
||||
|
||||
return l_key;
|
||||
};
|
||||
|
||||
/* encrypt a block of text */
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
#define f_rnd(i) \
|
||||
t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
|
||||
blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); \
|
||||
blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); \
|
||||
t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
|
||||
blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); \
|
||||
blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11])
|
||||
|
||||
void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
|
||||
{ u4byte t0, t1, blk[4];
|
||||
|
||||
u4byte *l_key = instance->l_key;
|
||||
u4byte *mk_tab = instance->mk_tab;
|
||||
|
||||
blk[0] = LE32(in_blk[0]) ^ l_key[0];
|
||||
blk[1] = LE32(in_blk[1]) ^ l_key[1];
|
||||
blk[2] = LE32(in_blk[2]) ^ l_key[2];
|
||||
blk[3] = LE32(in_blk[3]) ^ l_key[3];
|
||||
|
||||
f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3);
|
||||
f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7);
|
||||
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[4]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[5]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[6]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
};
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
|
||||
{ u4byte t0, t1, blk[4];
|
||||
|
||||
u4byte *l_key = instance->l_key;
|
||||
#ifdef TC_WINDOWS_BOOT_TWOFISH
|
||||
u4byte *mk_tab = instance->mk_tab;
|
||||
#endif
|
||||
int i;
|
||||
|
||||
blk[0] = LE32(in_blk[0]) ^ l_key[0];
|
||||
blk[1] = LE32(in_blk[1]) ^ l_key[1];
|
||||
blk[2] = LE32(in_blk[2]) ^ l_key[2];
|
||||
blk[3] = LE32(in_blk[3]) ^ l_key[3];
|
||||
|
||||
for (i = 0; i <= 7; ++i)
|
||||
{
|
||||
t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
|
||||
blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1);
|
||||
blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]);
|
||||
t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
|
||||
blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1);
|
||||
blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]);
|
||||
}
|
||||
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[4]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[5]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[6]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[7]);
|
||||
};
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
/* decrypt a block of text */
|
||||
|
||||
#ifndef TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
#define i_rnd(i) \
|
||||
t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
|
||||
blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); \
|
||||
blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \
|
||||
t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
|
||||
blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); \
|
||||
blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1)
|
||||
|
||||
void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
|
||||
{ u4byte t0, t1, blk[4];
|
||||
|
||||
u4byte *l_key = instance->l_key;
|
||||
u4byte *mk_tab = instance->mk_tab;
|
||||
|
||||
blk[0] = LE32(in_blk[0]) ^ l_key[4];
|
||||
blk[1] = LE32(in_blk[1]) ^ l_key[5];
|
||||
blk[2] = LE32(in_blk[2]) ^ l_key[6];
|
||||
blk[3] = LE32(in_blk[3]) ^ l_key[7];
|
||||
|
||||
i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4);
|
||||
i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0);
|
||||
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[0]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[1]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[2]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
};
|
||||
|
||||
#else // TC_MINIMIZE_CODE_SIZE
|
||||
|
||||
void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
|
||||
{ u4byte t0, t1, blk[4];
|
||||
|
||||
u4byte *l_key = instance->l_key;
|
||||
#ifdef TC_WINDOWS_BOOT_TWOFISH
|
||||
u4byte *mk_tab = instance->mk_tab;
|
||||
#endif
|
||||
int i;
|
||||
|
||||
blk[0] = LE32(in_blk[0]) ^ l_key[4];
|
||||
blk[1] = LE32(in_blk[1]) ^ l_key[5];
|
||||
blk[2] = LE32(in_blk[2]) ^ l_key[6];
|
||||
blk[3] = LE32(in_blk[3]) ^ l_key[7];
|
||||
|
||||
for (i = 7; i >= 0; --i)
|
||||
{
|
||||
t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
|
||||
blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]);
|
||||
blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1);
|
||||
t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
|
||||
blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]);
|
||||
blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1);
|
||||
}
|
||||
|
||||
out_blk[0] = LE32(blk[2] ^ l_key[0]);
|
||||
out_blk[1] = LE32(blk[3] ^ l_key[1]);
|
||||
out_blk[2] = LE32(blk[0] ^ l_key[2]);
|
||||
out_blk[3] = LE32(blk[1] ^ l_key[3]);
|
||||
};
|
||||
|
||||
#endif // TC_MINIMIZE_CODE_SIZE
|
||||
55
src/Crypto/Twofish.h
Normal file
55
src/Crypto/Twofish.h
Normal file
@@ -0,0 +1,55 @@
|
||||
#ifndef TWOFISH_H
|
||||
#define TWOFISH_H
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#ifndef u4byte
|
||||
#define u4byte unsigned __int32
|
||||
#endif
|
||||
#ifndef u1byte
|
||||
#define u1byte unsigned char
|
||||
#endif
|
||||
|
||||
#ifndef extract_byte
|
||||
#define extract_byte(x,n) ((u1byte)((x) >> (8 * n)))
|
||||
#endif
|
||||
|
||||
#ifndef rotl
|
||||
|
||||
#ifdef _WIN32
|
||||
#include <stdlib.h>
|
||||
#pragma intrinsic(_lrotr,_lrotl)
|
||||
#define rotr(x,n) _lrotr(x,n)
|
||||
#define rotl(x,n) _lrotl(x,n)
|
||||
#else
|
||||
#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n))))
|
||||
#define rotl(x,n) (((x)<<(n))|((x)>>(32-(n))))
|
||||
#endif
|
||||
|
||||
#endif
|
||||
typedef struct
|
||||
{
|
||||
u4byte l_key[40];
|
||||
u4byte s_key[4];
|
||||
#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
|
||||
u4byte mk_tab[4 * 256];
|
||||
#endif
|
||||
u4byte k_len;
|
||||
} TwofishInstance;
|
||||
|
||||
#define TWOFISH_KS sizeof(TwofishInstance)
|
||||
|
||||
u4byte * twofish_set_key(TwofishInstance *instance, const u4byte in_key[], const u4byte key_len);
|
||||
void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]);
|
||||
void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // TWOFISH_H
|
||||
1058
src/Crypto/Whirlpool.c
Normal file
1058
src/Crypto/Whirlpool.c
Normal file
File diff suppressed because it is too large
Load Diff
151
src/Crypto/Whirlpool.h
Normal file
151
src/Crypto/Whirlpool.h
Normal file
@@ -0,0 +1,151 @@
|
||||
#ifndef WHIRLPOOL_H
|
||||
#define WHIRLPOOL_H 1
|
||||
|
||||
#include "Common/Tcdefs.h"
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
#ifndef PORTABLE_C__
|
||||
#define PORTABLE_C__
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
/* Definition of minimum-width integer types
|
||||
*
|
||||
* u8 -> unsigned integer type, at least 8 bits, equivalent to unsigned char
|
||||
* u16 -> unsigned integer type, at least 16 bits
|
||||
* u32 -> unsigned integer type, at least 32 bits
|
||||
*
|
||||
* s8, s16, s32 -> signed counterparts of u8, u16, u32
|
||||
*
|
||||
* Always use macro's T8(), T16() or T32() to obtain exact-width results,
|
||||
* i.e., to specify the size of the result of each expression.
|
||||
*/
|
||||
|
||||
typedef signed char s8;
|
||||
typedef unsigned char u8;
|
||||
|
||||
#if UINT_MAX >= 4294967295UL
|
||||
|
||||
typedef signed short s16;
|
||||
typedef signed int s32;
|
||||
typedef unsigned short u16;
|
||||
typedef unsigned int u32;
|
||||
|
||||
#define ONE32 0xffffffffU
|
||||
|
||||
#else
|
||||
|
||||
typedef signed int s16;
|
||||
typedef signed long s32;
|
||||
typedef unsigned int u16;
|
||||
typedef unsigned __int32 u32;
|
||||
|
||||
#define ONE32 0xffffffffUL
|
||||
|
||||
#endif
|
||||
|
||||
#define ONE8 0xffU
|
||||
#define ONE16 0xffffU
|
||||
|
||||
#define T8(x) ((x) & ONE8)
|
||||
#define T16(x) ((x) & ONE16)
|
||||
#define T32(x) ((x) & ONE32)
|
||||
|
||||
#ifdef _MSC_VER
|
||||
typedef unsigned __int64 u64;
|
||||
typedef signed __int64 s64;
|
||||
#define LL(v) (v##ui64)
|
||||
#define ONE64 LL(0xffffffffffffffff)
|
||||
#else /* !_MSC_VER */
|
||||
typedef unsigned long long u64;
|
||||
typedef signed long long s64;
|
||||
#define LL(v) (v##ULL)
|
||||
#define ONE64 LL(0xffffffffffffffff)
|
||||
#endif /* ?_MSC_VER */
|
||||
#define T64(x) ((x) & ONE64)
|
||||
#define ROTR64(v, n) (((v) >> (n)) | T64((v) << (64 - (n))))
|
||||
/*
|
||||
* Note: the test is used to detect native 64-bit architectures;
|
||||
* if the unsigned long is strictly greater than 32-bit, it is
|
||||
* assumed to be at least 64-bit. This will not work correctly
|
||||
* on (old) 36-bit architectures (PDP-11 for instance).
|
||||
*
|
||||
* On non-64-bit architectures, "long long" is used.
|
||||
*/
|
||||
|
||||
/*
|
||||
* U8TO32_BIG(c) returns the 32-bit value stored in big-endian convention
|
||||
* in the unsigned char array pointed to by c.
|
||||
*/
|
||||
#define U8TO32_BIG(c) (((u32)T8(*(c)) << 24) | ((u32)T8(*((c) + 1)) << 16) | ((u32)T8(*((c) + 2)) << 8) | ((u32)T8(*((c) + 3))))
|
||||
|
||||
/*
|
||||
* U8TO32_LITTLE(c) returns the 32-bit value stored in little-endian convention
|
||||
* in the unsigned char array pointed to by c.
|
||||
*/
|
||||
#define U8TO32_LITTLE(c) (((u32)T8(*(c))) | ((u32)T8(*((c) + 1)) << 8) | (u32)T8(*((c) + 2)) << 16) | ((u32)T8(*((c) + 3)) << 24))
|
||||
|
||||
/*
|
||||
* U8TO32_BIG(c, v) stores the 32-bit-value v in big-endian convention
|
||||
* into the unsigned char array pointed to by c.
|
||||
*/
|
||||
#define U32TO8_BIG(c, v) do { u32 x = (v); u8 *d = (c); d[0] = T8(x >> 24); d[1] = T8(x >> 16); d[2] = T8(x >> 8); d[3] = T8(x); } while (0)
|
||||
|
||||
/*
|
||||
* U8TO32_LITTLE(c, v) stores the 32-bit-value v in little-endian convention
|
||||
* into the unsigned char array pointed to by c.
|
||||
*/
|
||||
#define U32TO8_LITTLE(c, v) do { u32 x = (v); u8 *d = (c); d[0] = T8(x); d[1] = T8(x >> 8); d[2] = T8(x >> 16); d[3] = T8(x >> 24); } while (0)
|
||||
|
||||
/*
|
||||
* ROTL32(v, n) returns the value of the 32-bit unsigned value v after
|
||||
* a rotation of n bits to the left. It might be replaced by the appropriate
|
||||
* architecture-specific macro.
|
||||
*
|
||||
* It evaluates v and n twice.
|
||||
*
|
||||
* The compiler might emit a warning if n is the constant 0. The result
|
||||
* is undefined if n is greater than 31.
|
||||
*/
|
||||
#define ROTL32(v, n) (T32((v) << (n)) | ((v) >> (32 - (n))))
|
||||
|
||||
/*
|
||||
* Whirlpool-specific definitions.
|
||||
*/
|
||||
|
||||
#define DIGESTBYTES 64
|
||||
#define DIGESTBITS (8*DIGESTBYTES) /* 512 */
|
||||
|
||||
#define WBLOCKBYTES 64
|
||||
#define WBLOCKBITS (8*WBLOCKBYTES) /* 512 */
|
||||
|
||||
#define LENGTHBYTES 32
|
||||
#define LENGTHBITS (8*LENGTHBYTES) /* 256 */
|
||||
|
||||
typedef struct NESSIEstruct {
|
||||
u8 bitLength[LENGTHBYTES]; /* global number of hashed bits (256-bit counter) */
|
||||
u8 buffer[WBLOCKBYTES]; /* buffer of data to hash */
|
||||
int bufferBits; /* current number of bits on the buffer */
|
||||
int bufferPos; /* current (possibly incomplete) byte slot on the buffer */
|
||||
u64 hash[DIGESTBYTES/8]; /* the hashing state */
|
||||
} NESSIEstruct;
|
||||
|
||||
#endif /* PORTABLE_C__ */
|
||||
|
||||
// -------------
|
||||
|
||||
typedef NESSIEstruct WHIRLPOOL_CTX;
|
||||
|
||||
void WHIRLPOOL_add(const unsigned char * const source, unsigned __int32 sourceBits, struct NESSIEstruct * const structpointer);
|
||||
void WHIRLPOOL_finalize(struct NESSIEstruct * const structpointer, unsigned char * const result);
|
||||
void WHIRLPOOL_init(struct NESSIEstruct * const structpointer);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* WHIRLPOOL_H */
|
||||
Reference in New Issue
Block a user