1
0
mirror of https://github.com/veracrypt/VeraCrypt.git synced 2025-11-12 11:28:26 -06:00

Normalize all line terminators

This commit is contained in:
David Foerster
2016-05-10 20:20:14 +02:00
parent 98b04198c6
commit fc37cc4a02
297 changed files with 202290 additions and 202290 deletions

View File

@@ -1,66 +1,66 @@
/* cryptoki.h include file for PKCS #11. */
/* $Revision: 1.4 $ */
/* License to copy and use this software is granted provided that it is
* identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
* (Cryptoki)" in all material mentioning or referencing this software.
* License is also granted to make and use derivative works provided that
* such works are identified as "derived from the RSA Security Inc. PKCS #11
* Cryptographic Token Interface (Cryptoki)" in all material mentioning or
* referencing the derived work.
* RSA Security Inc. makes no representations concerning either the
* merchantability of this software or the suitability of this software for
* any particular purpose. It is provided "as is" without express or implied
* warranty of any kind.
*/
/* This is a sample file containing the top level include directives
* for building Win32 Cryptoki libraries and applications.
*/
#ifndef ___CRYPTOKI_H_INC___
#define ___CRYPTOKI_H_INC___
#pragma pack(push, cryptoki, 1)
/* Specifies that the function is a DLL entry point. */
#define CK_IMPORT_SPEC __declspec(dllimport)
/* Define CRYPTOKI_EXPORTS during the build of cryptoki libraries. Do
* not define it in applications.
*/
#ifdef CRYPTOKI_EXPORTS
/* Specified that the function is an exported DLL entry point. */
#define CK_EXPORT_SPEC __declspec(dllexport)
#else
#define CK_EXPORT_SPEC CK_IMPORT_SPEC
#endif
/* Ensures the calling convention for Win32 builds */
#define CK_CALL_SPEC __cdecl
#define CK_PTR *
#define CK_DEFINE_FUNCTION(returnType, name) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC name
#define CK_DECLARE_FUNCTION(returnType, name) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC name
#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
returnType CK_IMPORT_SPEC (CK_CALL_SPEC CK_PTR name)
#define CK_CALLBACK_FUNCTION(returnType, name) \
returnType (CK_CALL_SPEC CK_PTR name)
#ifndef NULL_PTR
#define NULL_PTR 0
#endif
#include "pkcs11.h"
#pragma pack(pop, cryptoki)
#endif /* ___CRYPTOKI_H_INC___ */
/* cryptoki.h include file for PKCS #11. */
/* $Revision: 1.4 $ */
/* License to copy and use this software is granted provided that it is
* identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
* (Cryptoki)" in all material mentioning or referencing this software.
* License is also granted to make and use derivative works provided that
* such works are identified as "derived from the RSA Security Inc. PKCS #11
* Cryptographic Token Interface (Cryptoki)" in all material mentioning or
* referencing the derived work.
* RSA Security Inc. makes no representations concerning either the
* merchantability of this software or the suitability of this software for
* any particular purpose. It is provided "as is" without express or implied
* warranty of any kind.
*/
/* This is a sample file containing the top level include directives
* for building Win32 Cryptoki libraries and applications.
*/
#ifndef ___CRYPTOKI_H_INC___
#define ___CRYPTOKI_H_INC___
#pragma pack(push, cryptoki, 1)
/* Specifies that the function is a DLL entry point. */
#define CK_IMPORT_SPEC __declspec(dllimport)
/* Define CRYPTOKI_EXPORTS during the build of cryptoki libraries. Do
* not define it in applications.
*/
#ifdef CRYPTOKI_EXPORTS
/* Specified that the function is an exported DLL entry point. */
#define CK_EXPORT_SPEC __declspec(dllexport)
#else
#define CK_EXPORT_SPEC CK_IMPORT_SPEC
#endif
/* Ensures the calling convention for Win32 builds */
#define CK_CALL_SPEC __cdecl
#define CK_PTR *
#define CK_DEFINE_FUNCTION(returnType, name) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC name
#define CK_DECLARE_FUNCTION(returnType, name) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC name
#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
returnType CK_IMPORT_SPEC (CK_CALL_SPEC CK_PTR name)
#define CK_CALLBACK_FUNCTION(returnType, name) \
returnType (CK_CALL_SPEC CK_PTR name)
#ifndef NULL_PTR
#define NULL_PTR 0
#endif
#include "pkcs11.h"
#pragma pack(pop, cryptoki)
#endif /* ___CRYPTOKI_H_INC___ */

View File

@@ -1,299 +1,299 @@
/* pkcs11.h include file for PKCS #11. */
/* $Revision: 1.4 $ */
/* License to copy and use this software is granted provided that it is
* identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
* (Cryptoki)" in all material mentioning or referencing this software.
* License is also granted to make and use derivative works provided that
* such works are identified as "derived from the RSA Security Inc. PKCS #11
* Cryptographic Token Interface (Cryptoki)" in all material mentioning or
* referencing the derived work.
* RSA Security Inc. makes no representations concerning either the
* merchantability of this software or the suitability of this software for
* any particular purpose. It is provided "as is" without express or implied
* warranty of any kind.
*/
#ifndef _PKCS11_H_
#define _PKCS11_H_ 1
#ifdef __cplusplus
extern "C" {
#endif
/* Before including this file (pkcs11.h) (or pkcs11t.h by
* itself), 6 platform-specific macros must be defined. These
* macros are described below, and typical definitions for them
* are also given. Be advised that these definitions can depend
* on both the platform and the compiler used (and possibly also
* on whether a Cryptoki library is linked statically or
* dynamically).
*
* In addition to defining these 6 macros, the packing convention
* for Cryptoki structures should be set. The Cryptoki
* convention on packing is that structures should be 1-byte
* aligned.
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, this might be done by using the following
* preprocessor directive before including pkcs11.h or pkcs11t.h:
*
* #pragma pack(push, cryptoki, 1)
*
* and using the following preprocessor directive after including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(pop, cryptoki)
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, this might be done by using
* the following preprocessor directive before including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(1)
*
* In a UNIX environment, you're on your own for this. You might
* not need to do (or be able to do!) anything.
*
*
* Now for the macros:
*
*
* 1. CK_PTR: The indirection string for making a pointer to an
* object. It can be used like this:
*
* typedef CK_BYTE CK_PTR CK_BYTE_PTR;
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, it might be defined by:
*
* #define CK_PTR *
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, it might be defined by:
*
* #define CK_PTR far *
*
* In a typical UNIX environment, it might be defined by:
*
* #define CK_PTR *
*
*
* 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes
* an exportable Cryptoki library function definition out of a
* return type and a function name. It should be used in the
* following fashion to define the exposed Cryptoki functions in
* a Cryptoki library:
*
* CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* )
* {
* ...
* }
*
* If you're using Microsoft Developer Studio 5.0 to define a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __declspec(dllexport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to define a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType name
*
*
* 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
* an importable Cryptoki library function declaration out of a
* return type and a function name. It should be used in the
* following fashion:
*
* extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* );
*
* If you're using Microsoft Developer Studio 5.0 to declare a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __declspec(dllimport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to declare a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType name
*
*
* 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
* which makes a Cryptoki API function pointer declaration or
* function pointer type declaration out of a return type and a
* function name. It should be used in the following fashion:
*
* // Define funcPtr to be a pointer to a Cryptoki API function
* // taking arguments args and returning CK_RV.
* CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
*
* or
*
* // Define funcPtrType to be the type of a pointer to a
* // Cryptoki API function taking arguments args and returning
* // CK_RV, and then define funcPtr to be a variable of type
* // funcPtrType.
* typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
* funcPtrType funcPtr;
*
* If you're using Microsoft Developer Studio 5.0 to access
* functions in a Win32 Cryptoki .dll, in might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __declspec(dllimport) (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to access functions in a Win16 Cryptoki .dll, it might
* be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __export _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType (* name)
*
*
* 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
* a function pointer type for an application callback out of
* a return type for the callback and a name for the callback.
* It should be used in the following fashion:
*
* CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);
*
* to declare a function pointer, myCallback, to a callback
* which takes arguments args and returns a CK_RV. It can also
* be used like this:
*
* typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
* myCallbackType myCallback;
*
* If you're using Microsoft Developer Studio 5.0 to do Win32
* Cryptoki development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to do Win16 development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
*
* 6. NULL_PTR: This macro is the value of a NULL pointer.
*
* In any ANSI/ISO C environment (and in many others as well),
* this should best be defined by
*
* #ifndef NULL_PTR
* #define NULL_PTR 0
* #endif
*/
/* All the various Cryptoki types and #define'd values are in the
* file pkcs11t.h. */
#include "pkcs11t.h"
#define __PASTE(x,y) x##y
/* ==============================================================
* Define the "extern" form of all the entry points.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
extern CK_DECLARE_FUNCTION(CK_RV, name)
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define the typedef form of all the entry points. That is, for
* each Cryptoki function C_XXX, define a type CK_C_XXX which is
* a pointer to that kind of function.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name))
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define structed vector of entry points. A CK_FUNCTION_LIST
* contains a CK_VERSION indicating a library's Cryptoki version
* and then a whole slew of function pointers to the routines in
* the library. This type was declared, but not defined, in
* pkcs11t.h.
* ==============================================================
*/
#define CK_PKCS11_FUNCTION_INFO(name) \
__PASTE(CK_,name) name;
struct CK_FUNCTION_LIST {
CK_VERSION version; /* Cryptoki version */
/* Pile all the function pointers into the CK_FUNCTION_LIST. */
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
};
#undef CK_PKCS11_FUNCTION_INFO
#undef __PASTE
#ifdef __cplusplus
}
#endif
#endif
/* pkcs11.h include file for PKCS #11. */
/* $Revision: 1.4 $ */
/* License to copy and use this software is granted provided that it is
* identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
* (Cryptoki)" in all material mentioning or referencing this software.
* License is also granted to make and use derivative works provided that
* such works are identified as "derived from the RSA Security Inc. PKCS #11
* Cryptographic Token Interface (Cryptoki)" in all material mentioning or
* referencing the derived work.
* RSA Security Inc. makes no representations concerning either the
* merchantability of this software or the suitability of this software for
* any particular purpose. It is provided "as is" without express or implied
* warranty of any kind.
*/
#ifndef _PKCS11_H_
#define _PKCS11_H_ 1
#ifdef __cplusplus
extern "C" {
#endif
/* Before including this file (pkcs11.h) (or pkcs11t.h by
* itself), 6 platform-specific macros must be defined. These
* macros are described below, and typical definitions for them
* are also given. Be advised that these definitions can depend
* on both the platform and the compiler used (and possibly also
* on whether a Cryptoki library is linked statically or
* dynamically).
*
* In addition to defining these 6 macros, the packing convention
* for Cryptoki structures should be set. The Cryptoki
* convention on packing is that structures should be 1-byte
* aligned.
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, this might be done by using the following
* preprocessor directive before including pkcs11.h or pkcs11t.h:
*
* #pragma pack(push, cryptoki, 1)
*
* and using the following preprocessor directive after including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(pop, cryptoki)
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, this might be done by using
* the following preprocessor directive before including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(1)
*
* In a UNIX environment, you're on your own for this. You might
* not need to do (or be able to do!) anything.
*
*
* Now for the macros:
*
*
* 1. CK_PTR: The indirection string for making a pointer to an
* object. It can be used like this:
*
* typedef CK_BYTE CK_PTR CK_BYTE_PTR;
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, it might be defined by:
*
* #define CK_PTR *
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, it might be defined by:
*
* #define CK_PTR far *
*
* In a typical UNIX environment, it might be defined by:
*
* #define CK_PTR *
*
*
* 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes
* an exportable Cryptoki library function definition out of a
* return type and a function name. It should be used in the
* following fashion to define the exposed Cryptoki functions in
* a Cryptoki library:
*
* CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* )
* {
* ...
* }
*
* If you're using Microsoft Developer Studio 5.0 to define a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __declspec(dllexport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to define a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType name
*
*
* 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
* an importable Cryptoki library function declaration out of a
* return type and a function name. It should be used in the
* following fashion:
*
* extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* );
*
* If you're using Microsoft Developer Studio 5.0 to declare a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __declspec(dllimport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to declare a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType name
*
*
* 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
* which makes a Cryptoki API function pointer declaration or
* function pointer type declaration out of a return type and a
* function name. It should be used in the following fashion:
*
* // Define funcPtr to be a pointer to a Cryptoki API function
* // taking arguments args and returning CK_RV.
* CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
*
* or
*
* // Define funcPtrType to be the type of a pointer to a
* // Cryptoki API function taking arguments args and returning
* // CK_RV, and then define funcPtr to be a variable of type
* // funcPtrType.
* typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
* funcPtrType funcPtr;
*
* If you're using Microsoft Developer Studio 5.0 to access
* functions in a Win32 Cryptoki .dll, in might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __declspec(dllimport) (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to access functions in a Win16 Cryptoki .dll, it might
* be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __export _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType (* name)
*
*
* 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
* a function pointer type for an application callback out of
* a return type for the callback and a name for the callback.
* It should be used in the following fashion:
*
* CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);
*
* to declare a function pointer, myCallback, to a callback
* which takes arguments args and returns a CK_RV. It can also
* be used like this:
*
* typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
* myCallbackType myCallback;
*
* If you're using Microsoft Developer Studio 5.0 to do Win32
* Cryptoki development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to do Win16 development, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_CALLBACK_FUNCTION(returnType, name) \
* returnType (* name)
*
*
* 6. NULL_PTR: This macro is the value of a NULL pointer.
*
* In any ANSI/ISO C environment (and in many others as well),
* this should best be defined by
*
* #ifndef NULL_PTR
* #define NULL_PTR 0
* #endif
*/
/* All the various Cryptoki types and #define'd values are in the
* file pkcs11t.h. */
#include "pkcs11t.h"
#define __PASTE(x,y) x##y
/* ==============================================================
* Define the "extern" form of all the entry points.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
extern CK_DECLARE_FUNCTION(CK_RV, name)
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define the typedef form of all the entry points. That is, for
* each Cryptoki function C_XXX, define a type CK_C_XXX which is
* a pointer to that kind of function.
* ==============================================================
*/
#define CK_NEED_ARG_LIST 1
#define CK_PKCS11_FUNCTION_INFO(name) \
typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name))
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
#undef CK_NEED_ARG_LIST
#undef CK_PKCS11_FUNCTION_INFO
/* ==============================================================
* Define structed vector of entry points. A CK_FUNCTION_LIST
* contains a CK_VERSION indicating a library's Cryptoki version
* and then a whole slew of function pointers to the routines in
* the library. This type was declared, but not defined, in
* pkcs11t.h.
* ==============================================================
*/
#define CK_PKCS11_FUNCTION_INFO(name) \
__PASTE(CK_,name) name;
struct CK_FUNCTION_LIST {
CK_VERSION version; /* Cryptoki version */
/* Pile all the function pointers into the CK_FUNCTION_LIST. */
/* pkcs11f.h has all the information about the Cryptoki
* function prototypes. */
#include "pkcs11f.h"
};
#undef CK_PKCS11_FUNCTION_INFO
#undef __PASTE
#ifdef __cplusplus
}
#endif
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff