/* Derived from source code of TrueCrypt 7.1a, which is Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed by the TrueCrypt License 3.0. Modifications and additions to the original source code (contained in this file) and all other portions of this file are Copyright (c) 2013-2025 AM Crypto and are governed by the Apache License 2.0 the full text of which is contained in the file License.txt included in VeraCrypt binary and source code distribution packages. */ #include "TCdefs.h" #include "Apidrvr.h" #include "Ntdriver.h" #include "DriveFilter.h" #include "EncryptedIoQueue.h" #include "EncryptionThreadPool.h" #include "Volumes.h" #include #define MAX_WI_RETRIES 8 static void AcquireBufferPoolMutex (EncryptedIoQueue *queue) { NTSTATUS status; status = KeWaitForMutexObject (&queue->BufferPoolMutex, Executive, KernelMode, FALSE, NULL); if (!NT_SUCCESS (status)) TC_BUG_CHECK (status); } static void ReleaseBufferPoolMutex (EncryptedIoQueue *queue) { KeReleaseMutex (&queue->BufferPoolMutex, FALSE); } static void *GetPoolBuffer (EncryptedIoQueue *queue, ULONG requestedSize) { EncryptedIoQueueBuffer *buffer; void *bufferAddress = NULL; BOOL requestedSizePresentInPool = FALSE; while (TRUE) { AcquireBufferPoolMutex (queue); for (buffer = queue->FirstPoolBuffer; ; buffer = buffer->NextBuffer) { if (buffer && buffer->Size == requestedSize) { requestedSizePresentInPool = TRUE; if (!buffer->InUse) { // Reuse a free buffer buffer->InUse = TRUE; bufferAddress = buffer->Address; break; } } if (!buffer || !buffer->NextBuffer) { EncryptedIoQueueBuffer *newBuffer; if (requestedSizePresentInPool && !queue->StartPending) break; // Allocate a new buffer newBuffer = TCalloc (sizeof (EncryptedIoQueueBuffer)); if (!newBuffer) { bufferAddress = NULL; break; } bufferAddress = TCalloc (requestedSize); if (bufferAddress) { newBuffer->NextBuffer = NULL; newBuffer->Address = bufferAddress; newBuffer->Size = requestedSize; newBuffer->InUse = TRUE; if (!buffer) queue->FirstPoolBuffer = newBuffer; else buffer->NextBuffer = newBuffer; } else TCfree (newBuffer); break; } } ReleaseBufferPoolMutex (queue); if (bufferAddress || !requestedSizePresentInPool || queue->StartPending) break; KeWaitForSingleObject (&queue->PoolBufferFreeEvent, Executive, KernelMode, FALSE, NULL); } return bufferAddress; } static void ReleasePoolBuffer (EncryptedIoQueue *queue, void *address) { EncryptedIoQueueBuffer *buffer; AcquireBufferPoolMutex (queue); for (buffer = queue->FirstPoolBuffer; buffer != NULL; buffer = buffer->NextBuffer) { if (buffer->Address == address) { ASSERT (buffer->InUse); buffer->InUse = FALSE; break; } } ReleaseBufferPoolMutex (queue); KeSetEvent (&queue->PoolBufferFreeEvent, IO_DISK_INCREMENT, FALSE); } static void FreePoolBuffers (EncryptedIoQueue *queue) { EncryptedIoQueueBuffer *buffer; AcquireBufferPoolMutex (queue); for (buffer = queue->FirstPoolBuffer; buffer != NULL; ) { EncryptedIoQueueBuffer *nextBuffer = buffer->NextBuffer; ASSERT (!buffer->InUse || queue->StartPending); TCfree (buffer->Address); TCfree (buffer); buffer = nextBuffer; } queue->FirstPoolBuffer = NULL; ReleaseBufferPoolMutex (queue); } static void DecrementOutstandingIoCount (EncryptedIoQueue *queue) { if (InterlockedDecrement (&queue->OutstandingIoCount) == 0 && (queue->SuspendPending || queue->StopPending)) KeSetEvent (&queue->NoOutstandingIoEvent, IO_DISK_INCREMENT, FALSE); } static void OnItemCompleted (EncryptedIoQueueItem *item, BOOL freeItem) { EncryptedIoQueue* queue = item->Queue; PIRP originalIrp = item->OriginalIrp; if (NT_SUCCESS (item->Status)) { if (item->Write) queue->TotalBytesWritten += item->BytesCompleted; else queue->TotalBytesRead += item->BytesCompleted; } DecrementOutstandingIoCount (queue); if (freeItem) ReleasePoolBuffer (queue, item); // Release the RemoveLock last after we are done touching the queue IoReleaseRemoveLock (&queue->RemoveLock, originalIrp); } static NTSTATUS CompleteOriginalIrp (EncryptedIoQueueItem *item, NTSTATUS status, ULONG_PTR information) { #ifdef TC_TRACE_IO_QUEUE Dump ("< %I64d [%I64d] %c status=%x info=%I64d\n", item->OriginalIrpOffset, GetElapsedTime (&item->Queue->LastPerformanceCounter), item->Write ? 'W' : 'R', status, (int64) information); #endif TCCompleteDiskIrp (item->OriginalIrp, status, information); item->Status = status; OnItemCompleted (item, TRUE); return status; } static void AcquireFragmentBuffer (EncryptedIoQueue *queue, uint8 *buffer) { NTSTATUS status = STATUS_INVALID_PARAMETER; if (buffer == queue->FragmentBufferA) { status = KeWaitForSingleObject (&queue->FragmentBufferAFreeEvent, Executive, KernelMode, FALSE, NULL); } else if (buffer == queue->FragmentBufferB) { status = KeWaitForSingleObject (&queue->FragmentBufferBFreeEvent, Executive, KernelMode, FALSE, NULL); } if (!NT_SUCCESS (status)) TC_BUG_CHECK (status); } static void ReleaseFragmentBuffer (EncryptedIoQueue *queue, uint8 *buffer) { if (buffer == queue->FragmentBufferA) { KeSetEvent (&queue->FragmentBufferAFreeEvent, IO_DISK_INCREMENT, FALSE); } else if (buffer == queue->FragmentBufferB) { KeSetEvent (&queue->FragmentBufferBFreeEvent, IO_DISK_INCREMENT, FALSE); } else { TC_BUG_CHECK (STATUS_INVALID_PARAMETER); } } BOOL UpdateBuffer( uint8* buffer, uint8* secRegion, SIZE_T secRegionSize, uint64 bufferDiskOffset, uint32 bufferLength, BOOL doUpdate ) { uint64 intersectStart; uint32 intersectLength; uint32 i; DCS_DISK_ENTRY_LIST *DeList = NULL; BOOL updated = FALSE; if (secRegion == NULL) return FALSE; // Check if secRegion is large enough to hold the DCS_DISK_ENTRY_LIST structure // starting at offset 512 if (secRegionSize < (512 + sizeof(DCS_DISK_ENTRY_LIST))) return FALSE; DeList = (DCS_DISK_ENTRY_LIST*)(secRegion + 512); // Ensure Count doesn't exceed the fixed array size if (DeList->Count > 15) return FALSE; for (i = 0; i < DeList->Count; ++i) { if (DeList->DE[i].Type == DE_Sectors) { uint64 sectorStart = DeList->DE[i].Sectors.Start; uint64 sectorLength = DeList->DE[i].Sectors.Length; uint64 sectorOffset = DeList->DE[i].Sectors.Offset; // Check that sectorOffset and sectorLength are valid within secRegion (guard against overflow) ULONGLONG regionBoundEnd; // sectorOffset + sectorLength if (sectorOffset > (uint64)secRegionSize || sectorLength == 0 || FAILED(ULongLongAdd(sectorOffset, sectorLength, ®ionBoundEnd)) || regionBoundEnd > (ULONGLONG)secRegionSize) { // Invalid entry - skip continue; } // Safely compute inclusive end = start + length - 1 ULONGLONG secEnd, tmp; if (FAILED(ULongLongAdd(sectorStart, sectorLength, &tmp)) || tmp == 0) continue; // invalid descriptor (overflow or zero) secEnd = tmp - 1; GetIntersection( bufferDiskOffset, bufferLength, sectorStart, secEnd, &intersectStart, &intersectLength ); if (intersectLength != 0) { uint64 bufferPos = intersectStart - bufferDiskOffset; uint64 regionPos = sectorOffset + (intersectStart - sectorStart); // Check buffer boundaries using safe add ULONGLONG bufEndCheck; if (FAILED(ULongLongAdd(bufferPos, (ULONGLONG)intersectLength, &bufEndCheck)) || bufEndCheck > (ULONGLONG)bufferLength) continue; // Intersection out of buffer range // Check secRegion boundaries using safe add ULONGLONG regEndCheck; if (FAILED(ULongLongAdd(regionPos, (ULONGLONG)intersectLength, ®EndCheck)) || regEndCheck > (ULONGLONG)secRegionSize) continue; // Intersection out of secRegion range updated = TRUE; if (doUpdate && buffer != NULL) { memcpy( buffer + bufferPos, secRegion + regionPos, intersectLength ); } else { // If no update is needed but intersection found return TRUE; } } } } return updated; } // Note: completes the IRP and releases the RemoveLock last (after all queue accesses) static VOID CompleteIrpWorkItemRoutine(PDEVICE_OBJECT DeviceObject, PVOID Context) { PCOMPLETE_IRP_WORK_ITEM workItem = (PCOMPLETE_IRP_WORK_ITEM)Context; EncryptedIoQueueItem* item = (EncryptedIoQueueItem * ) workItem->Item; EncryptedIoQueue* queue = item->Queue; KIRQL oldIrql; UNREFERENCED_PARAMETER(DeviceObject); // Complete IRP TCCompleteDiskIrp(workItem->Irp, workItem->Status, workItem->Information); // Centralized accounting and cleanup item->Status = workItem->Status; item->BytesCompleted = workItem->Information; OnItemCompleted(item, TRUE); // releases RemoveLock last // Return or free the work item depending on origin if (workItem->FromPool) { KeAcquireSpinLock(&queue->WorkItemLock, &oldIrql); InsertTailList(&queue->FreeWorkItemsList, &workItem->ListEntry); KeReleaseSpinLock(&queue->WorkItemLock, oldIrql); // immediately wake any waiter KeSetEvent(&queue->WorkItemAvailableEvent, IO_DISK_INCREMENT, FALSE); } else { IoFreeWorkItem(workItem->WorkItem); TCfree(workItem); } if (InterlockedDecrement(&queue->ActiveWorkItems) == 0) KeSetEvent(&queue->NoActiveWorkItemsEvent, IO_DISK_INCREMENT, FALSE); } // Helper: acquire a completion work item (from pool if available, else elastic allocation) static PCOMPLETE_IRP_WORK_ITEM TryAcquireCompletionWorkItem(EncryptedIoQueue* queue) { PCOMPLETE_IRP_WORK_ITEM wi = NULL; KIRQL irql; // Try pooled work item KeAcquireSpinLock(&queue->WorkItemLock, &irql); if (!IsListEmpty(&queue->FreeWorkItemsList)) { PLIST_ENTRY e = RemoveHeadList(&queue->FreeWorkItemsList); wi = CONTAINING_RECORD(e, COMPLETE_IRP_WORK_ITEM, ListEntry); wi->FromPool = TRUE; } KeReleaseSpinLock(&queue->WorkItemLock, irql); // Elastic fallback: allocate on demand if (!wi) { wi = (PCOMPLETE_IRP_WORK_ITEM)TCalloc(sizeof(COMPLETE_IRP_WORK_ITEM)); if (wi) { RtlZeroMemory(wi, sizeof(*wi)); wi->WorkItem = IoAllocateWorkItem(queue->DeviceObject); if (!wi->WorkItem) { TCfree(wi); wi = NULL; } else wi->FromPool = FALSE; } } return wi; } // Complete the original IRP: try pooled work item, then elastic, else inline. // Precondition: item->Status and item->BytesCompleted are set by the caller. static VOID FinalizeOriginalIrp(EncryptedIoQueue* queue, EncryptedIoQueueItem* item) { // Try to get a work item (from the preallocated pool first, else elastic alloc) PCOMPLETE_IRP_WORK_ITEM wi = TryAcquireCompletionWorkItem(queue); if (wi) { InterlockedIncrement(&queue->ActiveWorkItems); KeResetEvent(&queue->NoActiveWorkItemsEvent); wi->Irp = item->OriginalIrp; wi->Status = item->Status; wi->Information = item->BytesCompleted; wi->Item = item; IoQueueWorkItem(wi->WorkItem, CompleteIrpWorkItemRoutine, DelayedWorkQueue, wi); return; } // Final fallback: inline completion (safe OOM path) TCCompleteDiskIrp(item->OriginalIrp, item->Status, item->BytesCompleted); OnItemCompleted(item, TRUE); } // Handles the completion of the original IRP. // Returns TRUE if the caller still owns and should free request parameter. // Returns FALSE if this function requeued request parameter (caller must NOT free it). static BOOLEAN HandleCompleteOriginalIrp(EncryptedIoQueue* queue, EncryptedIoRequest* request) { PCOMPLETE_IRP_WORK_ITEM wi = TryAcquireCompletionWorkItem(queue); if (!wi) { // No work item available. Either try again later, or give up and complete inline. request->WiRetryCount++; if (request->WiRetryCount >= MAX_WI_RETRIES) { // Final fallback: complete inline on the completion thread (no locks held) TCCompleteDiskIrp(request->Item->OriginalIrp, request->Item->Status, request->Item->BytesCompleted); // Complete accounting and release resources (RemoveLock released last inside OnItemCompleted) OnItemCompleted(request->Item, TRUE); // We completed: caller should free request return TRUE; } // Requeue and wait for a pooled work item to become available ExInterlockedInsertTailList(&queue->CompletionThreadQueue, &request->CompletionListEntry, &queue->CompletionThreadQueueLock); KeSetEvent(&queue->CompletionThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); // Prefer waiting on a real signal over blind sleeps (per-request exponential backoff 1...32ms) ULONG backoff = 1u << min(request->WiRetryCount - 1, 5); // 1,2,4,8,16,32 LARGE_INTEGER duetime; duetime.QuadPart = -(LONGLONG)backoff * 10000; KeWaitForSingleObject(&queue->WorkItemAvailableEvent, Executive, KernelMode, FALSE, &duetime); return FALSE; // we requeued so caller must not free request } // Queue to system worker thread InterlockedIncrement(&queue->ActiveWorkItems); KeResetEvent(&queue->NoActiveWorkItemsEvent); wi->Irp = request->Item->OriginalIrp; wi->Status = request->Item->Status; wi->Information = request->Item->BytesCompleted; wi->Item = request->Item; IoQueueWorkItem(wi->WorkItem, CompleteIrpWorkItemRoutine, DelayedWorkQueue, wi); return TRUE; // caller should free request } static VOID CompletionThreadProc(PVOID threadArg) { EncryptedIoQueue* queue = (EncryptedIoQueue*)threadArg; PLIST_ENTRY listEntry; EncryptedIoRequest* request; if (IsEncryptionThreadPoolRunning()) KeSetPriorityThread(KeGetCurrentThread(), LOW_REALTIME_PRIORITY); for (;;) { if (!NT_SUCCESS(KeWaitForSingleObject(&queue->CompletionThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL))) continue; while ((listEntry = ExInterlockedRemoveHeadList(&queue->CompletionThreadQueue, &queue->CompletionThreadQueueLock))) { request = CONTAINING_RECORD(listEntry, EncryptedIoRequest, CompletionListEntry); if (request->CompleteOriginalIrp) { if (!HandleCompleteOriginalIrp(queue, request)) { // request was requeued; do not free it now continue; } } ReleasePoolBuffer(queue, request); } if (queue->ThreadExitRequested) break; } PsTerminateSystemThread(STATUS_SUCCESS); } static NTSTATUS TCCachedRead (EncryptedIoQueue *queue, IO_STATUS_BLOCK *ioStatus, PVOID buffer, LARGE_INTEGER offset, ULONG length) { queue->LastReadOffset = offset; queue->LastReadLength = length; if (queue->ReadAheadBufferValid && queue->ReadAheadOffset.QuadPart == offset.QuadPart && queue->ReadAheadLength >= length) { memcpy (buffer, queue->ReadAheadBuffer, length); if (!queue->IsFilterDevice) { ioStatus->Information = length; ioStatus->Status = STATUS_SUCCESS; } return STATUS_SUCCESS; } if (queue->IsFilterDevice) return TCReadDevice (queue->LowerDeviceObject, buffer, offset, length); return ZwReadFile (queue->HostFileHandle, NULL, NULL, NULL, ioStatus, buffer, length, &offset, NULL); } static VOID IoThreadProc (PVOID threadArg) { EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg; PLIST_ENTRY listEntry; EncryptedIoRequest *request; KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY); if (!queue->IsFilterDevice && queue->SecurityClientContext) { #ifdef DEBUG NTSTATUS status = #endif SeImpersonateClientEx (queue->SecurityClientContext, NULL); ASSERT (NT_SUCCESS (status)); } while (!queue->ThreadExitRequested) { if (!NT_SUCCESS (KeWaitForSingleObject (&queue->IoThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL))) continue; if (queue->ThreadExitRequested) break; while ((listEntry = ExInterlockedRemoveHeadList (&queue->IoThreadQueue, &queue->IoThreadQueueLock))) { InterlockedDecrement (&queue->IoThreadPendingRequestCount); request = CONTAINING_RECORD (listEntry, EncryptedIoRequest, ListEntry); #ifdef TC_TRACE_IO_QUEUE Dump ("%c %I64d [%I64d] roff=%I64d rlen=%d\n", request->Item->Write ? 'W' : 'R', request->Item->OriginalIrpOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), request->Offset.QuadPart, request->Length); #endif // Perform IO request if no preceding request of the item failed ULONG_PTR bytesXfer = 0; // track per-fragment transfer request->ActualBytes = 0; // default request->WiRetryCount = 0; if (NT_SUCCESS (request->Item->Status)) { if (queue->ThreadBlockReadWrite) request->Item->Status = STATUS_DEVICE_BUSY; else if (queue->IsFilterDevice) { if (queue->RemapEncryptedArea && request->EncryptedLength > 0) { if (request->EncryptedLength != request->Length) { // Up to three subfragments may be required to handle a partially remapped fragment int subFragment; uint8 *subFragmentData = request->Data; for (subFragment = 0 ; subFragment < 3; ++subFragment) { LARGE_INTEGER subFragmentOffset; ULONG subFragmentLength = 0; subFragmentOffset.QuadPart = request->Offset.QuadPart; switch (subFragment) { case 0: subFragmentLength = (ULONG) request->EncryptedOffset; break; case 1: subFragmentOffset.QuadPart += request->EncryptedOffset + queue->RemappedAreaOffset; subFragmentLength = request->EncryptedLength; break; case 2: subFragmentOffset.QuadPart += request->EncryptedOffset + request->EncryptedLength; subFragmentLength = (ULONG) (request->Length - (request->EncryptedOffset + request->EncryptedLength)); break; } if (subFragmentLength > 0) { if (request->Item->Write) request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, subFragmentData, subFragmentOffset, subFragmentLength); else request->Item->Status = TCCachedRead (queue, NULL, subFragmentData, subFragmentOffset, subFragmentLength); subFragmentData += subFragmentLength; } } } else { // Remap the fragment LARGE_INTEGER remappedOffset; remappedOffset.QuadPart = request->Offset.QuadPart + queue->RemappedAreaOffset; if (request->Item->Write) request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, request->Data, remappedOffset, request->Length); else request->Item->Status = TCCachedRead (queue, NULL, request->Data, remappedOffset, request->Length); } } else { if (request->Item->Write) request->Item->Status = TCWriteDevice (queue->LowerDeviceObject, request->Data, request->Offset, request->Length); else request->Item->Status = TCCachedRead (queue, NULL, request->Data, request->Offset, request->Length); } bytesXfer = NT_SUCCESS(request->Item->Status) ? request->Length : 0; } else { IO_STATUS_BLOCK ioStatus; if (request->Item->Write) request->Item->Status = ZwWriteFile (queue->HostFileHandle, NULL, NULL, NULL, &ioStatus, request->Data, request->Length, &request->Offset, NULL); else request->Item->Status = TCCachedRead (queue, &ioStatus, request->Data, request->Offset, request->Length); bytesXfer = (ULONG_PTR) ioStatus.Information; // If short read on success, mark STATUS_END_OF_FILE but keep bytesXfer (true partial count) if (NT_SUCCESS (request->Item->Status) && ioStatus.Information != request->Length) request->Item->Status = STATUS_END_OF_FILE; } // For writes, we can account immediately. // For reads, defer final accounting until after clamp/copy below. if (request->Item->Write) { request->ActualBytes = (ULONG)bytesXfer; request->Item->BytesCompleted += bytesXfer; } else { // Provisional value; will be finalized after decrypt/copy clamp. request->ActualBytes = (ULONG)bytesXfer; } } if (request->Item->Write) { queue->ReadAheadBufferValid = FALSE; ReleaseFragmentBuffer(queue, request->Data); if (request->CompleteOriginalIrp) { // call unified path to finish the original IRP FinalizeOriginalIrp(queue, request->Item); } // request itself is no longer needed ReleasePoolBuffer(queue, request); } else { BOOL readAhead = FALSE; // Determine how many bytes we actually read for this fragment ULONG copyLen = request->ActualBytes; // Decrypt in IO thread. if (copyLen > 0 && request->EncryptedLength > 0) { UINT64_STRUCT dataUnit; ULONG encStart = (ULONG)request->EncryptedOffset; ULONG encInCopy = (copyLen > encStart) ? min((ULONG)copyLen - encStart, (ULONG)request->EncryptedLength) : 0; // Trim to full units (avoid returning ciphertext tails) encInCopy -= (encInCopy % ENCRYPTION_DATA_UNIT_SIZE); if (copyLen > encStart + encInCopy) copyLen = encStart + encInCopy; if (encInCopy > 0) { ASSERT((ULONG)request->EncryptedOffset + encInCopy <= copyLen); dataUnit.Value = (request->Offset.QuadPart + request->EncryptedOffset) / ENCRYPTION_DATA_UNIT_SIZE; if (queue->CryptoInfo->bPartitionInInactiveSysEncScope) dataUnit.Value += queue->CryptoInfo->FirstDataUnitNo.Value; else if (queue->RemapEncryptedArea) dataUnit.Value += queue->RemappedAreaDataUnitOffset; DecryptDataUnits(request->Data + request->EncryptedOffset, &dataUnit, encInCopy / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo); } } // Finalize read accounting after clamp bytesXfer = copyLen; request->ActualBytes = (ULONG)bytesXfer; request->Item->BytesCompleted += bytesXfer; // Update subst sectors before copying if (copyLen > 0 && (queue->SecRegionData != NULL) && (queue->SecRegionSize > 512)) { UpdateBuffer(request->Data, queue->SecRegionData, queue->SecRegionSize, request->Offset.QuadPart, copyLen, TRUE); } if (copyLen > 0) memcpy(request->OrigDataBufferFragment, request->Data, copyLen); ReleaseFragmentBuffer (queue, request->Data); request->Data = request->OrigDataBufferFragment; if (request->CompleteOriginalIrp && queue->LastReadLength > 0 && NT_SUCCESS (request->Item->Status) && InterlockedExchangeAdd (&queue->IoThreadPendingRequestCount, 0) == 0) { readAhead = TRUE; InterlockedIncrement (&queue->OutstandingIoCount); } if (request->CompleteOriginalIrp) { ExInterlockedInsertTailList (&queue->CompletionThreadQueue, &request->CompletionListEntry, &queue->CompletionThreadQueueLock); KeSetEvent (&queue->CompletionThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); } else { // Non-final fragment: no need to involve the completion thread ReleasePoolBuffer(queue, request); } if (readAhead) { queue->ReadAheadBufferValid = FALSE; queue->ReadAheadOffset.QuadPart = queue->LastReadOffset.QuadPart + queue->LastReadLength; queue->ReadAheadLength = queue->LastReadLength; if (queue->ReadAheadOffset.QuadPart + queue->ReadAheadLength <= queue->MaxReadAheadOffset.QuadPart) { #ifdef TC_TRACE_IO_QUEUE Dump ("A %I64d [%I64d] roff=%I64d rlen=%d\n", request->Item->OriginalIrpOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), queue->ReadAheadOffset, queue->ReadAheadLength); #endif if (queue->IsFilterDevice) { queue->ReadAheadBufferValid = NT_SUCCESS (TCReadDevice (queue->LowerDeviceObject, queue->ReadAheadBuffer, queue->ReadAheadOffset, queue->ReadAheadLength)); } else { IO_STATUS_BLOCK ioStatus; queue->ReadAheadBufferValid = NT_SUCCESS (ZwReadFile (queue->HostFileHandle, NULL, NULL, NULL, &ioStatus, queue->ReadAheadBuffer, queue->ReadAheadLength, &queue->ReadAheadOffset, NULL)); queue->ReadAheadLength = (ULONG) ioStatus.Information; } } DecrementOutstandingIoCount (queue); } } } } PsTerminateSystemThread (STATUS_SUCCESS); } static VOID MainThreadProc (PVOID threadArg) { EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg; PLIST_ENTRY listEntry; EncryptedIoQueueItem *item; LARGE_INTEGER fragmentOffset; ULONG dataRemaining; PUCHAR activeFragmentBuffer = queue->FragmentBufferA; PUCHAR dataBuffer; EncryptedIoRequest *request; uint64 intersectStart; uint32 intersectLength; ULONGLONG addResult; HRESULT hResult; if (IsEncryptionThreadPoolRunning()) KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY); while (!queue->ThreadExitRequested) { if (!NT_SUCCESS (KeWaitForSingleObject (&queue->MainThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL))) continue; while ((listEntry = ExInterlockedRemoveHeadList (&queue->MainThreadQueue, &queue->MainThreadQueueLock))) { PIRP irp = CONTAINING_RECORD (listEntry, IRP, Tail.Overlay.ListEntry); PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (irp); if (queue->Suspended) KeWaitForSingleObject (&queue->QueueResumedEvent, Executive, KernelMode, FALSE, NULL); item = GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem)); if (!item) { TCCompleteDiskIrp (irp, STATUS_INSUFFICIENT_RESOURCES, 0); DecrementOutstandingIoCount (queue); IoReleaseRemoveLock (&queue->RemoveLock, irp); continue; } item->Queue = queue; item->OriginalIrp = irp; item->Status = STATUS_SUCCESS; item->BytesCompleted = 0; if (irp->Cancel) { CompleteOriginalIrp (item, STATUS_CANCELLED, 0); continue; } switch (irpSp->MajorFunction) { case IRP_MJ_READ: item->Write = FALSE; item->OriginalOffset = irpSp->Parameters.Read.ByteOffset; item->OriginalLength = irpSp->Parameters.Read.Length; break; case IRP_MJ_WRITE: item->Write = TRUE; item->OriginalOffset = irpSp->Parameters.Write.ByteOffset; item->OriginalLength = irpSp->Parameters.Write.Length; break; default: CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } #ifdef TC_TRACE_IO_QUEUE item->OriginalIrpOffset = item->OriginalOffset; #endif // Handle misaligned read operations to work around a bug in Windows System Assessment Tool which does not follow FILE_FLAG_NO_BUFFERING requirements when benchmarking disk devices if (queue->IsFilterDevice && !item->Write && item->OriginalLength > 0 && (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) == 0 && (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0) { uint8 *buffer; ULONG alignedLength; LARGE_INTEGER alignedOffset; hResult = ULongAdd(item->OriginalLength, ENCRYPTION_DATA_UNIT_SIZE, &alignedLength); if (hResult != S_OK) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } alignedOffset.QuadPart = item->OriginalOffset.QuadPart & ~((LONGLONG) ENCRYPTION_DATA_UNIT_SIZE - 1); buffer = TCalloc (alignedLength); if (!buffer) { CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } item->Status = TCReadDevice (queue->LowerDeviceObject, buffer, alignedOffset, alignedLength); if (NT_SUCCESS (item->Status)) { UINT64_STRUCT dataUnit; dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, (HighPagePriority | MdlMappingNoExecute)); if (!dataBuffer) { TCfree (buffer); CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } if (queue->EncryptedAreaStart != -1 && queue->EncryptedAreaEnd != -1) { GetIntersection (alignedOffset.QuadPart, alignedLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength); if (intersectLength > 0) { dataUnit.Value = intersectStart / ENCRYPTION_DATA_UNIT_SIZE; DecryptDataUnits (buffer + (intersectStart - alignedOffset.QuadPart), &dataUnit, intersectLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo); } } // Update subst sectors if((queue->SecRegionData != NULL) && (queue->SecRegionSize > 512)) { UpdateBuffer(buffer, queue->SecRegionData, queue->SecRegionSize, alignedOffset.QuadPart, alignedLength, TRUE); } memcpy (dataBuffer, buffer + (item->OriginalOffset.LowPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)), item->OriginalLength); } TCfree (buffer); // Defer completion to avoid inline IoCompleteRequest re-entrancy item->BytesCompleted = NT_SUCCESS(item->Status) ? item->OriginalLength : 0; FinalizeOriginalIrp(queue, item); continue; } // Validate offset and length if (item->OriginalLength == 0 || (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0 || (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0 || ( !queue->IsFilterDevice && ( (S_OK != ULongLongAdd(item->OriginalOffset.QuadPart, item->OriginalLength, &addResult)) || (addResult > (ULONGLONG) queue->VirtualDeviceLength) ) ) ) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } #ifdef TC_TRACE_IO_QUEUE Dump ("Q %I64d [%I64d] %c len=%d\n", item->OriginalOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), item->Write ? 'W' : 'R', item->OriginalLength); #endif if (!queue->IsFilterDevice) { // Adjust the offset for host file or device if (queue->CryptoInfo->hiddenVolume) hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->hiddenVolumeOffset, &addResult); else hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->volDataAreaOffset, &addResult); if (hResult != S_OK) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } else item->OriginalOffset.QuadPart = addResult; // Hidden volume protection if (item->Write && queue->CryptoInfo->bProtectHiddenVolume) { // If there has already been a write operation denied in order to protect the // hidden volume (since the volume mount time) if (queue->CryptoInfo->bHiddenVolProtectionAction) { // Do not allow writing to this volume anymore. This is to fake a complete volume // or system failure (otherwise certain kinds of inconsistency within the file // system could indicate that this volume has used hidden volume protection). CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } // Verify that no byte is going to be written to the hidden volume area if (RegionsOverlap ((unsigned __int64) item->OriginalOffset.QuadPart, (unsigned __int64) item->OriginalOffset.QuadPart + item->OriginalLength - 1, queue->CryptoInfo->hiddenVolumeOffset, (unsigned __int64) queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1)) { Dump ("Hidden volume protection triggered: write %I64d-%I64d (protected %I64d-%I64d)\n", item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, queue->CryptoInfo->hiddenVolumeOffset, queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1); queue->CryptoInfo->bHiddenVolProtectionAction = TRUE; // Deny this write operation to prevent the hidden volume from being overwritten CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } } } else if (item->Write && RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET + TC_BOOT_ENCRYPTION_VOLUME_HEADER_SIZE - 1)) { // Prevent inappropriately designed software from damaging important data that may be out of sync with the backup on the Rescue Disk (such as the end of the encrypted area). Dump ("Preventing write to the system encryption key data area\n"); CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0); continue; } else if (item->Write && IsHiddenSystemRunning() && (RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_SECTOR_SIZE_BIOS, TC_BOOT_LOADER_AREA_SECTOR_COUNT * TC_SECTOR_SIZE_BIOS - 1) || RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, GetBootDriveLength(), _I64_MAX))) { Dump ("Preventing write to boot loader or host protected area\n"); CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0); continue; } else if (item->Write && (queue->SecRegionData != NULL) && (queue->SecRegionSize > 512) && UpdateBuffer (NULL, queue->SecRegionData, queue->SecRegionSize, item->OriginalOffset.QuadPart, item->OriginalLength, FALSE)) { // Prevent inappropriately designed software from damaging important data Dump ("Preventing write to the system GPT area\n"); CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0); continue; } dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, (HighPagePriority | MdlMappingNoExecute)); if (dataBuffer == NULL) { CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } // Divide data block to fragments to enable efficient overlapping of encryption and IO operations dataRemaining = item->OriginalLength; fragmentOffset = item->OriginalOffset; while (dataRemaining > 0) { ULONG queueFragmentSize = queue->FragmentSize; BOOL isLastFragment = dataRemaining <= queueFragmentSize; ULONG dataFragmentLength = isLastFragment ? dataRemaining : queueFragmentSize; activeFragmentBuffer = (activeFragmentBuffer == queue->FragmentBufferA ? queue->FragmentBufferB : queue->FragmentBufferA); InterlockedIncrement (&queue->IoThreadPendingRequestCount); // Create IO request request = GetPoolBuffer (queue, sizeof (EncryptedIoRequest)); if (!request) { InterlockedDecrement(&queue->IoThreadPendingRequestCount); CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); break; } request->Item = item; request->CompleteOriginalIrp = isLastFragment; request->Offset = fragmentOffset; request->Data = activeFragmentBuffer; request->OrigDataBufferFragment = dataBuffer; request->Length = dataFragmentLength; if (queue->IsFilterDevice || queue->bSupportPartialEncryption) { if (queue->EncryptedAreaStart == -1 || queue->EncryptedAreaEnd == -1) { request->EncryptedLength = 0; } else { // Get intersection of data fragment with encrypted area GetIntersection (fragmentOffset.QuadPart, dataFragmentLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength); request->EncryptedOffset = intersectStart - fragmentOffset.QuadPart; request->EncryptedLength = intersectLength; } } else { request->EncryptedOffset = 0; request->EncryptedLength = dataFragmentLength; } AcquireFragmentBuffer (queue, activeFragmentBuffer); if (item->Write) { // Encrypt data memcpy (activeFragmentBuffer, dataBuffer, dataFragmentLength); if (request->EncryptedLength > 0) { UINT64_STRUCT dataUnit; ASSERT ((ULONG)request->EncryptedOffset + request->EncryptedLength <= request->Length); dataUnit.Value = (request->Offset.QuadPart + request->EncryptedOffset) / ENCRYPTION_DATA_UNIT_SIZE; if (queue->CryptoInfo->bPartitionInInactiveSysEncScope) dataUnit.Value += queue->CryptoInfo->FirstDataUnitNo.Value; else if (queue->RemapEncryptedArea) dataUnit.Value += queue->RemappedAreaDataUnitOffset; EncryptDataUnits (activeFragmentBuffer + request->EncryptedOffset, &dataUnit, request->EncryptedLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo); } } // Queue IO request ExInterlockedInsertTailList (&queue->IoThreadQueue, &request->ListEntry, &queue->IoThreadQueueLock); KeSetEvent (&queue->IoThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); if (isLastFragment) break; dataRemaining -= queueFragmentSize; dataBuffer += queueFragmentSize; fragmentOffset.QuadPart += queueFragmentSize; } } } PsTerminateSystemThread (STATUS_SUCCESS); } NTSTATUS EncryptedIoQueueAddIrp (EncryptedIoQueue *queue, PIRP irp) { NTSTATUS status; InterlockedIncrement (&queue->OutstandingIoCount); if (queue->StopPending) { Dump ("STATUS_DEVICE_NOT_READY out=%d\n", queue->OutstandingIoCount); status = STATUS_DEVICE_NOT_READY; goto err; } status = IoAcquireRemoveLock (&queue->RemoveLock, irp); if (!NT_SUCCESS (status)) goto err; #ifdef TC_TRACE_IO_QUEUE { PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (irp); Dump ("* %I64d [%I64d] %c len=%d out=%d\n", irpSp->MajorFunction == IRP_MJ_WRITE ? irpSp->Parameters.Write.ByteOffset : irpSp->Parameters.Read.ByteOffset, GetElapsedTime (&queue->LastPerformanceCounter), irpSp->MajorFunction == IRP_MJ_WRITE ? 'W' : 'R', irpSp->MajorFunction == IRP_MJ_WRITE ? irpSp->Parameters.Write.Length : irpSp->Parameters.Read.Length, queue->OutstandingIoCount); } #endif IoMarkIrpPending (irp); ExInterlockedInsertTailList (&queue->MainThreadQueue, &irp->Tail.Overlay.ListEntry, &queue->MainThreadQueueLock); KeSetEvent (&queue->MainThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); return STATUS_PENDING; err: DecrementOutstandingIoCount (queue); return status; } NTSTATUS EncryptedIoQueueHoldWhenIdle (EncryptedIoQueue *queue, int64 timeout) { NTSTATUS status; ASSERT (!queue->Suspended); queue->SuspendPending = TRUE; while (TRUE) { while (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0) { LARGE_INTEGER waitTimeout; waitTimeout.QuadPart = timeout * -10000; status = KeWaitForSingleObject (&queue->NoOutstandingIoEvent, Executive, KernelMode, FALSE, timeout != 0 ? &waitTimeout : NULL); if (status == STATUS_TIMEOUT) status = STATUS_UNSUCCESSFUL; if (!NT_SUCCESS (status)) { queue->SuspendPending = FALSE; return status; } TCSleep (1); if (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0) { queue->SuspendPending = FALSE; return STATUS_UNSUCCESSFUL; } } KeClearEvent (&queue->QueueResumedEvent); queue->Suspended = TRUE; if (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) == 0) break; queue->Suspended = FALSE; KeSetEvent (&queue->QueueResumedEvent, IO_DISK_INCREMENT, FALSE); } queue->ReadAheadBufferValid = FALSE; queue->SuspendPending = FALSE; return STATUS_SUCCESS; } BOOL EncryptedIoQueueIsSuspended (EncryptedIoQueue *queue) { return queue->Suspended; } BOOL EncryptedIoQueueIsRunning (EncryptedIoQueue *queue) { return !queue->StopPending; } NTSTATUS EncryptedIoQueueResumeFromHold (EncryptedIoQueue *queue) { ASSERT (queue->Suspended); queue->Suspended = FALSE; KeSetEvent (&queue->QueueResumedEvent, IO_DISK_INCREMENT, FALSE); return STATUS_SUCCESS; } static VOID FreeCompletionWorkItemPool(EncryptedIoQueue* queue) { if (!queue->WorkItemPool) return; // Drain the list for hygiene KIRQL irql; KeAcquireSpinLock(&queue->WorkItemLock, &irql); while (!IsListEmpty(&queue->FreeWorkItemsList)) (void) RemoveHeadList(&queue->FreeWorkItemsList); KeReleaseSpinLock(&queue->WorkItemLock, irql); for (ULONG i = 0; i < queue->MaxWorkItems; ++i) { if (queue->WorkItemPool[i].WorkItem) { IoFreeWorkItem(queue->WorkItemPool[i].WorkItem); queue->WorkItemPool[i].WorkItem = NULL; } } TCfree(queue->WorkItemPool); queue->WorkItemPool = NULL; } NTSTATUS EncryptedIoQueueStart (EncryptedIoQueue *queue) { NTSTATUS status; EncryptedIoQueueBuffer *buffer; int i, j, preallocatedIoRequestCount, preallocatedItemCount, fragmentSize; KIRQL oldIrql; preallocatedIoRequestCount = EncryptionIoRequestCount; preallocatedItemCount = EncryptionItemCount; fragmentSize = EncryptionFragmentSize; // Clamp preallocation to a sane hard limit if (preallocatedIoRequestCount > TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_MAX_COUNT) preallocatedIoRequestCount = TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_MAX_COUNT; queue->StartPending = TRUE; queue->ThreadExitRequested = FALSE; queue->OutstandingIoCount = 0; queue->IoThreadPendingRequestCount = 0; queue->FirstPoolBuffer = NULL; KeInitializeMutex (&queue->BufferPoolMutex, 0); KeInitializeEvent (&queue->NoOutstandingIoEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&queue->PoolBufferFreeEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&queue->QueueResumedEvent, SynchronizationEvent, FALSE); retry_fragmentAllocate: queue->FragmentBufferA = TCalloc (fragmentSize); if (!queue->FragmentBufferA) { if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE) { fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; goto retry_fragmentAllocate; } else goto noMemory; } queue->FragmentBufferB = TCalloc (fragmentSize); if (!queue->FragmentBufferB) { if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE) { fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; TCfree (queue->FragmentBufferA); queue->FragmentBufferA = NULL; goto retry_fragmentAllocate; } else goto noMemory; } queue->ReadAheadBufferValid = FALSE; queue->ReadAheadBuffer = TCalloc (fragmentSize); if (!queue->ReadAheadBuffer) { if (fragmentSize > TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE) { fragmentSize = TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; TCfree (queue->FragmentBufferA); TCfree (queue->FragmentBufferB); queue->FragmentBufferA = NULL; queue->FragmentBufferB = NULL; goto retry_fragmentAllocate; } else goto noMemory; } queue->FragmentSize = fragmentSize; KeInitializeEvent (&queue->FragmentBufferAFreeEvent, SynchronizationEvent, TRUE); KeInitializeEvent (&queue->FragmentBufferBFreeEvent, SynchronizationEvent, TRUE); retry_preallocated: // Preallocate buffers for (i = 0; i < preallocatedIoRequestCount; ++i) { if (i < preallocatedItemCount && !GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem))) { if (preallocatedItemCount > TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT) { preallocatedItemCount = TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT; preallocatedIoRequestCount = TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT; FreePoolBuffers (queue); goto retry_preallocated; } else goto noMemory; } if (!GetPoolBuffer (queue, sizeof (EncryptedIoRequest))) { if (preallocatedIoRequestCount > TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT) { preallocatedItemCount = TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT; preallocatedIoRequestCount = TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT; FreePoolBuffers (queue); goto retry_preallocated; } else goto noMemory; } } for (buffer = queue->FirstPoolBuffer; buffer != NULL; buffer = buffer->NextBuffer) { buffer->InUse = FALSE; } // Initialize the free work item list InitializeListHead(&queue->FreeWorkItemsList); KeInitializeSpinLock(&queue->WorkItemLock); KeInitializeEvent(&queue->WorkItemAvailableEvent, SynchronizationEvent, FALSE); queue->MaxWorkItems = EncryptionMaxWorkItems; // Enforce [1, VC_MAX_WORK_ITEMS] if (queue->MaxWorkItems == 0) queue->MaxWorkItems = 1; if (queue->MaxWorkItems > VC_MAX_WORK_ITEMS) queue->MaxWorkItems = VC_MAX_WORK_ITEMS; { // Two-phase allocation to avoid leaving stale LIST_ENTRYs on failure PCOMPLETE_IRP_WORK_ITEM pool; pool = (PCOMPLETE_IRP_WORK_ITEM)TCalloc(sizeof(COMPLETE_IRP_WORK_ITEM) * queue->MaxWorkItems); if (!pool) goto noMemory; // Allocate all work items first for (i = 0; i < (int) queue->MaxWorkItems; ++i) { pool[i].WorkItem = IoAllocateWorkItem(queue->DeviceObject); if (!pool[i].WorkItem) { for (j = 0; j < i; ++j) IoFreeWorkItem(pool[j].WorkItem); TCfree(pool); goto noMemory; } } // Publish pool and insert entries into the free list under the spin lock queue->WorkItemPool = pool; KeAcquireSpinLock(&queue->WorkItemLock, &oldIrql); for (i = 0; i < (int) queue->MaxWorkItems; ++i) { InsertTailList(&queue->FreeWorkItemsList, &queue->WorkItemPool[i].ListEntry); } KeReleaseSpinLock(&queue->WorkItemLock, oldIrql); } queue->ActiveWorkItems = 0; KeInitializeEvent(&queue->NoActiveWorkItemsEvent, NotificationEvent, FALSE); // Main thread InitializeListHead (&queue->MainThreadQueue); KeInitializeSpinLock (&queue->MainThreadQueueLock); KeInitializeEvent (&queue->MainThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (MainThreadProc, queue, &queue->MainThread); if (!NT_SUCCESS (status)) goto err; // IO thread InitializeListHead (&queue->IoThreadQueue); KeInitializeSpinLock (&queue->IoThreadQueueLock); KeInitializeEvent (&queue->IoThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (IoThreadProc, queue, &queue->IoThread); if (!NT_SUCCESS (status)) { queue->ThreadExitRequested = TRUE; TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); goto err; } // Completion thread InitializeListHead (&queue->CompletionThreadQueue); KeInitializeSpinLock (&queue->CompletionThreadQueueLock); KeInitializeEvent (&queue->CompletionThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (CompletionThreadProc, queue, &queue->CompletionThreads[0]); if (!NT_SUCCESS (status)) { queue->ThreadExitRequested = TRUE; TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent); goto err; } status = TCStartThread (CompletionThreadProc, queue, &queue->CompletionThreads[1]); if (!NT_SUCCESS (status)) { queue->ThreadExitRequested = TRUE; TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent); TCStopThread (queue->CompletionThreads[0], &queue->CompletionThreadQueueNotEmptyEvent); goto err; } #ifdef TC_TRACE_IO_QUEUE GetElapsedTimeInit (&queue->LastPerformanceCounter); #endif queue->StopPending = FALSE; queue->StartPending = FALSE; Dump ("Queue started\n"); return STATUS_SUCCESS; noMemory: status = STATUS_INSUFFICIENT_RESOURCES; err: if (queue->FragmentBufferA) TCfree (queue->FragmentBufferA); if (queue->FragmentBufferB) TCfree (queue->FragmentBufferB); if (queue->ReadAheadBuffer) TCfree (queue->ReadAheadBuffer); FreePoolBuffers (queue); if (queue->WorkItemPool) FreeCompletionWorkItemPool(queue); queue->StartPending = FALSE; return status; } NTSTATUS EncryptedIoQueueStop (EncryptedIoQueue *queue) { ASSERT (!queue->StopPending); queue->StopPending = TRUE; while (InterlockedExchangeAdd (&queue->OutstandingIoCount, 0) > 0) { KeWaitForSingleObject (&queue->NoOutstandingIoEvent, Executive, KernelMode, FALSE, NULL); } Dump ("Queue stopping out=%d\n", queue->OutstandingIoCount); queue->ThreadExitRequested = TRUE; // Wake all threads KeSetEvent(&queue->MainThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); KeSetEvent(&queue->IoThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); KeSetEvent(&queue->CompletionThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); // Wake any GetPoolBuffer waiters (defensive) KeSetEvent(&queue->PoolBufferFreeEvent, IO_DISK_INCREMENT, FALSE); TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent); TCStopThread (queue->CompletionThreads[0], &queue->CompletionThreadQueueNotEmptyEvent); TCStopThread (queue->CompletionThreads[1], &queue->CompletionThreadQueueNotEmptyEvent); /* * Wait for all completion work items to finish. * * Work-item drain protocol: * - queue->ActiveWorkItems is incremented by producers when queuing a completion work item, * and queue->NoActiveWorkItemsEvent (NotificationEvent) is reset at that time * (see FinalizeOriginalIrp and HandleCompleteOriginalIrp). * - CompleteIrpWorkItemRoutine decrements ActiveWorkItems and sets * NoActiveWorkItemsEvent when the count transitions 1 -> 0. * - Waiters must not reset the notification event. They simply loop until the count is 0, * waiting for the final 1 -> 0 transition to signal the event. */ Dump("Queue stopping, waiting for active work items (n=%ld)\n", InterlockedExchangeAdd(&queue->ActiveWorkItems, 0)); // atomic read for (;;) { LONG n = InterlockedExchangeAdd(&queue->ActiveWorkItems, 0); // atomic read if (n == 0) break; KeWaitForSingleObject(&queue->NoActiveWorkItemsEvent, Executive, KernelMode, FALSE, NULL); } FreeCompletionWorkItemPool(queue); TCfree (queue->FragmentBufferA); TCfree (queue->FragmentBufferB); TCfree (queue->ReadAheadBuffer); FreePoolBuffers (queue); Dump ("Queue stopped out=%d\n", queue->OutstandingIoCount); return STATUS_SUCCESS; }