mirror of
https://github.com/veracrypt/VeraCrypt.git
synced 2025-11-11 02:58:02 -06:00
279 lines
10 KiB
C
279 lines
10 KiB
C
/*
|
|
* Support for SHA-256 x86 instrinsic
|
|
* Based on public domain code by Sean Gulley
|
|
* (https://github.com/mitls/hacl-star/tree/master/experimental/hash)
|
|
*
|
|
* Botan is released under the Simplified BSD License (see license.txt)
|
|
*/
|
|
|
|
/* November 10th 2024: Modified for VeraCrypt */
|
|
|
|
#include "Sha2.h"
|
|
#include "Common/Endian.h"
|
|
#include "cpu.h"
|
|
#include "misc.h"
|
|
|
|
#if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM)
|
|
#define NO_OPTIMIZED_VERSIONS
|
|
#endif
|
|
|
|
#ifndef NO_OPTIMIZED_VERSIONS
|
|
|
|
#if CRYPTOPP_SHANI_AVAILABLE
|
|
|
|
#ifndef _MSC_VER
|
|
#include <signal.h>
|
|
#include <setjmp.h>
|
|
|
|
typedef void (*SigHandler)(int);
|
|
|
|
static jmp_buf s_jmpNoSHA;
|
|
static void SigIllHandlerSHA(int p)
|
|
{
|
|
longjmp(s_jmpNoSHA, 1);
|
|
}
|
|
#endif
|
|
|
|
int TrySHA256()
|
|
{
|
|
volatile int result = 0;
|
|
#ifdef _MSC_VER
|
|
__try
|
|
#else
|
|
SigHandler oldHandler = signal(SIGILL, SigIllHandlerSHA);
|
|
if (oldHandler == SIG_ERR)
|
|
return 0;
|
|
if (setjmp(s_jmpNoSHA))
|
|
result = 0;
|
|
else
|
|
#endif
|
|
{
|
|
// Known input message block
|
|
__m128i msg0 = _mm_setr_epi32(0x12345678, 0x9ABCDEF0, 0x87654321, 0x0FEDCBA9);
|
|
__m128i msg1 = _mm_setr_epi32(0x11111111, 0x22222222, 0x33333333, 0x44444444);
|
|
|
|
// SHA256 message schedule update
|
|
__m128i tmp = _mm_sha256msg1_epu32(msg0, msg1);
|
|
|
|
// Verify result - these values were pre-computed for the given input
|
|
#ifdef _MSC_VER
|
|
if (tmp.m128i_u32[0] == 0xD8131B44 &&
|
|
tmp.m128i_u32[1] == 0x9DE6E22B &&
|
|
tmp.m128i_u32[2] == 0xA86D643A &&
|
|
tmp.m128i_u32[3] == 0x74320FED)
|
|
#else
|
|
if (((uint32_t*)(&tmp))[0] == 0xD8131B44 &&
|
|
((uint32_t*)(&tmp))[1] == 0x9DE6E22B &&
|
|
((uint32_t*)(&tmp))[2] == 0xA86D643A &&
|
|
((uint32_t*)(&tmp))[3] == 0x74320FED)
|
|
#endif
|
|
result = 1;
|
|
}
|
|
#ifdef _MSC_VER
|
|
__except (EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
// ignore error if SHA instructions not supported
|
|
}
|
|
#else
|
|
signal(SIGILL, oldHandler);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
//
|
|
void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks)
|
|
{
|
|
// Constants table - align for better performance
|
|
CRYPTOPP_ALIGN_DATA(64)
|
|
static const uint_32t K[64] = {
|
|
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
|
|
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
|
|
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
|
|
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
|
|
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
|
|
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
|
|
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
|
|
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
|
|
};
|
|
|
|
const __m128i* K_mm = (const __m128i*)K;
|
|
const __m128i* input_mm = (const __m128i*)mp;
|
|
|
|
// Create byte shuffle mask for big-endian to little-endian conversion
|
|
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203);
|
|
|
|
// Load initial values
|
|
__m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]);
|
|
__m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]);
|
|
|
|
// Adjust byte ordering
|
|
STATE0 = _mm_shuffle_epi32(STATE0, 0xB1); // CDAB
|
|
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
|
|
|
|
__m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8); // ABEF
|
|
STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0); // CDGH
|
|
STATE0 = TMP;
|
|
|
|
while(num_blks > 0) {
|
|
// Save current state
|
|
const __m128i ABEF_SAVE = STATE0;
|
|
const __m128i CDGH_SAVE = STATE1;
|
|
|
|
__m128i MSG;
|
|
|
|
__m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK);
|
|
__m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK);
|
|
__m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK);
|
|
__m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK);
|
|
|
|
// Rounds 0-3
|
|
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
// Rounds 4-7
|
|
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
|
|
|
|
// Rounds 8-11
|
|
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
|
|
|
|
// Rounds 12-15
|
|
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
|
|
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
|
|
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
|
|
|
|
// Rounds 16-19
|
|
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
|
|
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
|
|
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
|
|
|
|
// Rounds 20-23
|
|
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
|
|
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
|
|
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
|
|
|
|
// Rounds 24-27
|
|
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
|
|
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
|
|
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
|
|
|
|
// Rounds 28-31
|
|
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
|
|
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
|
|
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
|
|
|
|
// Rounds 32-35
|
|
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
|
|
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
|
|
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
|
|
|
|
// Rounds 36-39
|
|
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
|
|
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
|
|
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
|
|
|
|
// Rounds 40-43
|
|
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
|
|
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
|
|
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
|
|
|
|
// Rounds 44-47
|
|
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4));
|
|
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
|
|
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
|
|
|
|
// Rounds 48-51
|
|
MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4));
|
|
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
|
|
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
|
|
|
|
// Rounds 52-55
|
|
MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4));
|
|
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
|
|
|
|
// Rounds 56-59
|
|
MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4));
|
|
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
|
|
|
|
// Rounds 60-63
|
|
MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15));
|
|
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
|
|
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E));
|
|
|
|
// Add values back to state
|
|
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
|
|
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
|
|
|
|
input_mm += 4;
|
|
num_blks--;
|
|
}
|
|
|
|
// Shuffle state back to correct order
|
|
STATE0 = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
|
|
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
|
|
|
|
// Save state
|
|
_mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0)); // DCBA
|
|
_mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8)); // HGFE
|
|
}
|
|
|
|
#endif
|
|
#endif
|