#include #include #include #include #include using namespace libcron; using namespace std::chrono; using namespace date; std::string create_schedule_expiring_in(std::chrono::system_clock::time_point now, hours h, minutes m, seconds s) { now = now + h + m + s; auto dt = CronSchedule::to_calendar_time(now); std::string res{}; res += std::to_string(dt.sec) + " "; res += std::to_string(dt.min) + " "; res += std::to_string(dt.hour) + " * * ?"; return res; } SCENARIO("Adding a task") { GIVEN("A Cron instance with no task") { Cron<> c; auto expired = false; THEN("Starts with no task") { REQUIRE(c.count() == 0); } WHEN("Adding a task that runs every second") { REQUIRE(c.add_schedule("A task", "* * * * * ?", [&expired](auto&) { expired = true; }) ); THEN("Count is 1 and task was not expired two seconds ago") { REQUIRE(c.count() == 1); c.tick(c.get_clock().now() - 2s); REQUIRE_FALSE(expired); } AND_THEN("Task is expired when calculating based on current time") { c.tick(); THEN("Task is expired") { REQUIRE(expired); } } } } } SCENARIO("Adding a task that expires in the future") { GIVEN("A Cron instance with task expiring in 3 seconds") { auto expired = false; Cron<> c; REQUIRE(c.add_schedule("A task", create_schedule_expiring_in(c.get_clock().now(), hours{0}, minutes{0}, seconds{3}), [&expired](auto&) { expired = true; }) ); THEN("Not yet expired") { REQUIRE_FALSE(expired); } AND_WHEN("When waiting one second") { std::this_thread::sleep_for(1s); c.tick(); THEN("Task has not yet expired") { REQUIRE_FALSE(expired); } } AND_WHEN("When waiting three seconds") { std::this_thread::sleep_for(3s); c.tick(); THEN("Task has expired") { REQUIRE(expired); } } } } SCENARIO("Get delay using Task-Information") { using namespace std::chrono_literals; GIVEN("A Cron instance with one task expiring in 2 seconds, but taking 3 seconds to execute") { auto _2_second_expired = 0; auto _delay = std::chrono::system_clock::duration(-1s); Cron<> c; REQUIRE(c.add_schedule("Two", "*/2 * * * * ?", [&_2_second_expired, &_delay](auto& i) { _2_second_expired++; _delay = i.get_delay(); std::this_thread::sleep_for(3s); }) ); THEN("Not yet expired") { REQUIRE_FALSE(_2_second_expired); REQUIRE(_delay <= 0s); } WHEN("Exactly schedule task") { while (_2_second_expired == 0) c.tick(); THEN("Task should have expired within a valid time") { REQUIRE(_2_second_expired == 1); REQUIRE(_delay <= 1s); } AND_THEN("Executing another tick again, leading to execute task again immediatly, but not on time as execution has taken 3 seconds.") { c.tick(); REQUIRE(_2_second_expired == 2); REQUIRE(_delay >= 1s); } } } } SCENARIO("Task priority") { GIVEN("A Cron instance with two tasks expiring in 3 and 5 seconds, added in 'reverse' order") { auto _3_second_expired = 0; auto _5_second_expired = 0; Cron<> c; REQUIRE(c.add_schedule("Five", create_schedule_expiring_in(c.get_clock().now(), hours{0}, minutes{0}, seconds{5}), [&_5_second_expired](auto&) { _5_second_expired++; }) ); REQUIRE(c.add_schedule("Three", create_schedule_expiring_in(c.get_clock().now(), hours{0}, minutes{0}, seconds{3}), [&_3_second_expired](auto&) { _3_second_expired++; }) ); THEN("Not yet expired") { REQUIRE_FALSE(_3_second_expired); REQUIRE_FALSE(_5_second_expired); } WHEN("Waiting 1 seconds") { std::this_thread::sleep_for(1s); c.tick(); THEN("Task has not yet expired") { REQUIRE(_3_second_expired == 0); REQUIRE(_5_second_expired == 0); } } AND_WHEN("Waiting 3 seconds") { std::this_thread::sleep_for(3s); c.tick(); THEN("3 second task has expired") { REQUIRE(_3_second_expired == 1); REQUIRE(_5_second_expired == 0); } } AND_WHEN("Waiting 5 seconds") { std::this_thread::sleep_for(5s); c.tick(); THEN("3 and 5 second task has expired") { REQUIRE(_3_second_expired == 1); REQUIRE(_5_second_expired == 1); } } AND_WHEN("Waiting based on the time given by the Cron instance") { auto msec = std::chrono::duration_cast(c.time_until_next()); std::this_thread::sleep_for(c.time_until_next()); c.tick(); THEN("3 second task has expired") { REQUIRE(_3_second_expired == 1); REQUIRE(_5_second_expired == 0); } } AND_WHEN("Waiting based on the time given by the Cron instance") { std::this_thread::sleep_for(c.time_until_next()); REQUIRE(c.tick() == 1); std::this_thread::sleep_for(c.time_until_next()); REQUIRE(c.tick() == 1); THEN("3 and 5 second task has each expired once") { REQUIRE(_3_second_expired == 1); REQUIRE(_5_second_expired == 1); } } } } class TestClock : public ICronClock { public: std::chrono::system_clock::time_point now() const override { return current_time; } std::chrono::seconds utc_offset(std::chrono::system_clock::time_point) const override { return 0s; } void add(system_clock::duration time) { current_time += time; } void set(system_clock::time_point new_time) { current_time = new_time; } private: system_clock::time_point current_time = system_clock::now(); }; SCENARIO("Clock changes") { GIVEN("A Cron instance with a single task expiring every hour") { Cron c{}; auto& clock = c.get_clock(); // Midnight clock.set(sys_days{2018_y / 05 / 05}); // Every hour REQUIRE(c.add_schedule("Clock change task", "0 0 * * * ?", [](auto&) { }) ); // https://linux.die.net/man/8/cron WHEN("Clock changes <3h forward") { THEN("Task expires accordingly") { REQUIRE(c.tick() == 1); clock.add(minutes{30}); // 00:30 REQUIRE(c.tick() == 0); clock.add(minutes{30}); // 01:00 REQUIRE(c.tick() == 1); REQUIRE(c.tick() == 0); REQUIRE(c.tick() == 0); clock.add(minutes{30}); // 01:30 REQUIRE(c.tick() == 0); clock.add(minutes{15}); // 01:45 REQUIRE(c.tick() == 0); clock.add(minutes{15}); // 02:00 REQUIRE(c.tick() == 1); } } AND_WHEN("Clock is moved forward >= 3h") { THEN("Task are rescheduled, not run") { REQUIRE(c.tick() == 1); clock.add(hours{3}); // 03:00 REQUIRE(c.tick() == 1); // Rescheduled clock.add(minutes{15}); // 03:15 REQUIRE(c.tick() == 0); clock.add(minutes{45}); // 04:00 REQUIRE(c.tick() == 1); } } AND_WHEN("Clock is moved back <3h") { THEN("Tasks retain their last scheduled time and are prevented from running twice") { REQUIRE(c.tick() == 1); clock.add(-hours{1}); // 23:00 REQUIRE(c.tick() == 0); clock.add(-hours{1}); // 22:00 REQUIRE(c.tick() == 0); clock.add(hours{3}); // 1:00 REQUIRE(c.tick() == 1); } } AND_WHEN("Clock is moved back >3h") { THEN("Tasks are rescheduled") { REQUIRE(c.tick() == 1); clock.add(-hours{3}); // 21:00 REQUIRE(c.tick() == 1); REQUIRE(c.tick() == 0); clock.add(hours{1}); // 22:00 REQUIRE(c.tick() == 1); } } } } SCENARIO("Multiple ticks per second") { Cron c{}; auto& clock = c.get_clock(); auto now = sys_days{2018_y / 05 / 05}; clock.set(now); int run_count = 0; // Every 10 seconds REQUIRE(c.add_schedule("Clock change task", "*/10 0 * * * ?", [&run_count](auto&) { run_count++; }) ); c.tick(now); REQUIRE(run_count == 1); WHEN("Many ticks during one seconds") { for(auto i = 0; i < 10; ++i) { clock.add(std::chrono::microseconds{1}); c.tick(); } THEN("Run count has not increased") { REQUIRE(run_count == 1); } } } SCENARIO("Tasks can be added and removed from the scheduler") { GIVEN("A Cron instance with no task") { Cron<> c; auto expired = false; WHEN("Adding 5 tasks that runs every second") { REQUIRE(c.add_schedule("Task-1", "* * * * * ?", [&expired](auto&) { expired = true; }) ); REQUIRE(c.add_schedule("Task-2", "* * * * * ?", [&expired](auto&) { expired = true; }) ); REQUIRE(c.add_schedule("Task-3", "* * * * * ?", [&expired](auto&) { expired = true; }) ); REQUIRE(c.add_schedule("Task-4", "* * * * * ?", [&expired](auto&) { expired = true; }) ); REQUIRE(c.add_schedule("Task-5", "* * * * * ?", [&expired](auto&) { expired = true; }) ); THEN("Count is 5") { REQUIRE(c.count() == 5); } AND_THEN("Removing all scheduled tasks") { c.clear_schedules(); REQUIRE(c.count() == 0); } AND_THEN("Removing a task that does not exist") { c.remove_schedule("Task-6"); REQUIRE(c.count() == 5); } AND_THEN("Removing a task that does exist") { c.remove_schedule("Task-5"); REQUIRE(c.count() == 4); } } } } SCENARIO("Testing CRON-Tick Performance") { GIVEN("A Cron instance with no task") { using namespace std::chrono_literals; using clock = std::chrono::high_resolution_clock; using std::chrono::milliseconds; using std::chrono::duration_cast; Cron c1{}; auto& cron_clock1 = c1.get_clock(); Cron c2{}; auto& cron_clock2 = c2.get_clock(); Cron c3{}; auto& cron_clock3 = c3.get_clock(); int count1 = 0; int count2 = 0; int count3 = 0; WHEN("Creating 1000 CronData Objects") { std::string cron_job = "* * * * * ?"; auto begin_cron_data = clock::now(); for(int i = 1; i <= 1000; i++) { auto cron = CronData::create(cron_job); } auto end_cron_data = clock::now(); auto msec_cron_data = duration_cast(end_cron_data - begin_cron_data); // Hopefully Creating a lot of Cron Objects does not take more than a second REQUIRE(msec_cron_data <= 1000ms); } WHEN("Adding 1000 Tasks where with an invalid CRON-String with std::map") { std::map name_schedule_map; for(int i = 1; i <= 1000; i++) { name_schedule_map["Task-" + std::to_string(i)] = "* * * * * ?"; } name_schedule_map["Task-1000"] = "invalid"; auto res = c1.add_schedule(name_schedule_map, [](auto&) { }); REQUIRE_FALSE(std::get<0>(res)); REQUIRE(std::get<1>(res) == "Task-1000"); REQUIRE(std::get<2>(res) == "invalid"); } WHEN("Adding a std::vector>") { std::vector> name_schedule_map; for(int i = 1; i <= 1000; i++) { name_schedule_map.push_back(std::make_tuple("Task-" + std::to_string(i), "* * * * * ?")); } auto res = c1.add_schedule(name_schedule_map, [](auto&) { }); REQUIRE(std::get<0>(res)); } WHEN("Adding a std::vector>") { std::vector> name_schedule_map; for(int i = 1; i <= 1000; i++) { name_schedule_map.push_back(std::make_pair("Task-" + std::to_string(i), "* * * * * ?")); } auto res = c1.add_schedule(name_schedule_map, [](auto&) { }); REQUIRE(std::get<0>(res)); } WHEN("Adding a std::unordered_map") { std::unordered_map name_schedule_map; for(int i = 1; i <= 1000; i++) { name_schedule_map["Task-" + std::to_string(i)] = "* * * * * ?"; } auto res = c1.add_schedule(name_schedule_map, [](auto&) { }); REQUIRE(std::get<0>(res)); } WHEN("Adding 1000 Tasks to two Cron-Objects expiring after 1 second calling add_schedule") { auto begin_add_sequential = clock::now(); for(int i = 1; i <= 1000; i++) { REQUIRE(c1.add_schedule("Task-" + std::to_string(i), "* * * * * ?", [&count1](auto&) { count1++; }) ); REQUIRE(c2.add_schedule("Task-" + std::to_string(i), "* * * * * ?", [&count2](auto&) { count2++; }) ); } auto end_add_sequential = clock::now(); std::map name_schedule_map{}; for(int i = 1; i <= 1000; i++) { name_schedule_map["Task-" + std::to_string(i)] = "* * * * * ?"; } auto begin_add_batch = clock::now(); REQUIRE(std::get<0>(c3.add_schedule(name_schedule_map, [&count3](auto&) { count3++; })) ); auto end_add_batch = clock::now(); auto time_sequential = duration_cast(end_add_sequential - begin_add_sequential)/2; auto time_batch = duration_cast(end_add_batch - begin_add_batch); // This should hopefully take only a few second? REQUIRE(time_sequential < 10000ms); REQUIRE(time_batch < 5000ms); REQUIRE(time_batch < time_sequential); REQUIRE(c1.count() == 1000); REQUIRE(c2.count() == 1000); REQUIRE(c3.count() == 1000); THEN("Execute all Tasks 10 Times") { milliseconds msec1; auto t1 = std::thread([&cron_clock1, &c1, &msec1]() { auto begin_tick = clock::now(); for(auto i = 0; i < 10; ++i) { cron_clock1.add(std::chrono::seconds{1}); c1.tick(); } auto end_tick = clock::now(); msec1 = duration_cast(end_tick - begin_tick)/10; }); milliseconds msec2; auto t2 = std::thread([&cron_clock2, &c2, &msec2]() { auto begin_tick = clock::now(); for(auto i = 0; i < 10; ++i) { cron_clock2.add(std::chrono::seconds{1}); c2.tick(); } auto end_tick = clock::now(); msec2 = duration_cast(end_tick - begin_tick)/10; }); milliseconds msec3; auto t3 = std::thread([&cron_clock3, &c3, &msec3]() { auto begin_tick = clock::now(); for(auto i = 0; i < 10; ++i) { cron_clock3.add(std::chrono::seconds{1}); c3.tick(); } auto end_tick = clock::now(); msec3 = duration_cast(end_tick - begin_tick)/10; }); t1.join(); t2.join(); t3.join(); REQUIRE(count1 == 10000); REQUIRE(count2 == 10000); REQUIRE(count3 == 10000); // Hopefully executing a more or less empty task does only take some milliseconds REQUIRE(msec1 <= 10ms); REQUIRE(msec2 <= 10ms); REQUIRE(msec3 <= 10ms); } } } }