sys: Queued Events and use fin FSP_IOQ

This commit is contained in:
Bill Zissimopoulos 2016-12-03 19:41:26 -08:00
parent f7ca9f0522
commit a1af8ff921
2 changed files with 182 additions and 9 deletions

View File

@ -639,7 +639,151 @@ VOID FspIrpSetTopFlags(PIRP Irp, ULONG Flags)
Irp->Tail.Overlay.DriverContext[2] = (PVOID)((UINT_PTR)Request | (Flags << 2));
}
/*
* Queued Events
*
* Queued Events are an implementation of SynchronizationEvent's using
* a KQUEUE. The reason we do this is because a KQUEUE has some desirable
* properties:
*
* - It has a LIFO wait discipline, which is advantageous in many situations.
* - It can limit the numbers of threads that can be satisfied concurrently.
*
* Queued Events must always be allocated in non-paged storage.
*
* Here is how Queued Events work. A queued event consists of a KQUEUE and a
* spin lock. There is also a LIST_ENTRY which is used as a dummy item to
* place in the KQUEUE.
*
* The KQUEUE is guaranteed to contain either 0 or 1 items. When the KQUEUE
* contains 0 items the queued event is considered non-signaled. When the
* KQUEUE contains 1 items the queued event is considered signaled.
*
* To transition from the non-signaled to the signaled state, we acquire the
* spin lock and then insert the dummy item in the KQUEUE using KeInsertQueue.
* To transition from the signaled to the non-signaled state, we simply (wait
* and) remove the dummy item from the KQUEUE using KeRemoveQueue (without
* the use of the spin lock).
*
* EventSet:
* AcquireSpinLock
* if (0 == KeReadState()) // if KQUEUE is empty
* KeInsertQueue(DUMMY);
* ReleaseSpinLock
*
* EventWait:
* KeRemoveQueue(); // (wait and) remove item
*
* First notice that EventSet is serialized by the use of the spin lock. This
* guarantees that the dummy item can be only inserted ONCE in the KQUEUE
* and that the only possible signaled state transitions for EventSet are 0->1
* and 1->1. This is how KeSetEvent works for a SynchronizationEvent.
*
* Second notice that EventWait is not protected by the spin lock, which means
* that it can happen at any time including concurrently with EventSet or
* another EventWait. Notice also that for EventWait the only possible
* transitions are 1->0 or 0->0 (0->block->0). This is how
* KeWaitForSingleObject works for a SynchronizationEvent.
*
* We now have to consider what happens when we have one EventSet concurrently
* with one or more EventWait's:
*
* 1. The EventWait(s) happen before KeReadState. If the KQUEUE has an
* item one EventWait gets satisfied, otherwise it blocks. In this case
* KeReadState will read the KQUEUE's state as 0 and KeInsertQueue will
* insert the dummy item, which will unblock the EventWait.
*
* 2. The EventWait(s) happen after KeReadState, but before KeInsertQueue.
* If the dummy item was already in the KQUEUE the KeReadState test will
* fail and KeInsertQueue will not be executed, but EventWait will be
* satisfied immediately. If the dummy item was not in the KQUEUE the
* KeReadState will succeed and EventWait will momentarily block until
* KeInsertQueue releases it.
*
* 3. The EventWait(s) happen after KeInsertQueue. In this case the dummy
* item in is the KQUEUE already and one EventWait will be satisfied
* immediately.
*
* A final note: Queued Events cannot cleanly support an EventClear operation.
* The obvious choice of using KeRemoveQueue with a 0 timeout is insufficient
* because it would associate the current thread with the KQUEUE and that is
* not desirable. KeRundownQueue cannot be used either because it
* disassociates all threads from the KQUEUE.
*/
typedef struct
{
KQUEUE Queue;
LIST_ENTRY DummyEntry;
KSPIN_LOCK SpinLock;
} FSP_QEVENT;
static inline
VOID FspQeventInitialize(FSP_QEVENT *Qevent, ULONG ThreadCount)
{
KeInitializeQueue(&Qevent->Queue, ThreadCount);
RtlZeroMemory(&Qevent->DummyEntry, sizeof Qevent->DummyEntry);
KeInitializeSpinLock(&Qevent->SpinLock);
}
static inline
VOID FspQeventFinalize(FSP_QEVENT *Qevent)
{
KeRundownQueue(&Qevent->Queue);
}
static inline
VOID FspQeventSetNoLock(FSP_QEVENT *Qevent)
{
ASSERT(KeGetCurrentIrql() == DISPATCH_LEVEL);
if (0 == KeReadStateQueue(&Qevent->Queue))
KeInsertQueue(&Qevent->Queue, &Qevent->DummyEntry);
}
static inline
VOID FspQeventSet(FSP_QEVENT *Qevent)
{
KIRQL Irql;
KeAcquireSpinLock(&Qevent->SpinLock, &Irql);
FspQeventSetNoLock(Qevent);
KeReleaseSpinLock(&Qevent->SpinLock, Irql);
}
static inline
NTSTATUS FspQeventWait(FSP_QEVENT *Qevent,
KPROCESSOR_MODE WaitMode, BOOLEAN Alertable, PLARGE_INTEGER PTimeout)
{
PLIST_ENTRY ListEntry;
KeRemoveQueueEx(&Qevent->Queue, WaitMode, Alertable, PTimeout, &ListEntry, 1);
if (ListEntry == &Qevent->DummyEntry)
return STATUS_SUCCESS;
return (NTSTATUS)(UINT_PTR)ListEntry;
}
static inline
NTSTATUS FspQeventCancellableWait(FSP_QEVENT *Qevent,
PLARGE_INTEGER PTimeout, PIRP Irp)
{
NTSTATUS Result;
UINT64 ExpirationTime = 0, InterruptTime;
if (0 != PTimeout && 0 > PTimeout->QuadPart)
ExpirationTime = KeQueryInterruptTime() - PTimeout->QuadPart;
retry:
Result = FspQeventWait(Qevent, KernelMode, TRUE, PTimeout);
if (STATUS_ALERTED == Result)
{
if (PsIsThreadTerminating(PsGetCurrentThread()))
return STATUS_THREAD_IS_TERMINATING;
if (0 != Irp && Irp->Cancel)
return STATUS_CANCELLED;
if (0 != ExpirationTime)
{
InterruptTime = KeQueryInterruptTime();
if (ExpirationTime <= InterruptTime)
return STATUS_TIMEOUT;
PTimeout->QuadPart = (INT64)InterruptTime - (INT64)ExpirationTime;
}
goto retry;
}
return Result;
}
/* I/O queue */
#define FSP_IOQ_USE_QEVENT
#define FSP_IOQ_PROCESS_NO_CANCEL
#define FspIoqTimeout ((PIRP)1)
#define FspIoqCancelled ((PIRP)2)
#define FspIoqPostIrp(Q, I, R) FspIoqPostIrpEx(Q, I, FALSE, R)
@ -648,7 +792,11 @@ typedef struct
{
KSPIN_LOCK SpinLock;
BOOLEAN Stopped;
#if defined(FSP_IOQ_USE_QEVENT)
FSP_QEVENT PendingIrpEvent;
#else
KEVENT PendingIrpEvent;
#endif
LIST_ENTRY PendingIrpList, ProcessIrpList, RetriedIrpList;
IO_CSQ PendingIoCsq, ProcessIoCsq, RetriedIoCsq;
ULONG IrpTimeout;

View File

@ -22,7 +22,9 @@
*
* [NOTE: this comment no longer describes accurately an FSP_IOQ. The main
* difference is that an FSP_IOQ now has a third queue which is used to
* retry IRP completions. However the main ideas below are still valid, so
* retry IRP completions. Another difference is that the FSP_IOQ can now
* use Queued Events (which are implemented on top of KQUEUE) instead of
* SynchronizationEvent's. However the main ideas below are still valid, so
* I am leaving the rest of the comment intact.]
*
* An FSP_IOQ encapsulates the main FSP mechanism for handling IRP's.
@ -123,8 +125,31 @@
* To deal with the second problem we simply call FspIoqPendingResetSynch after
* a WaitForSingleObject call if the IRP dequeueing fails; this ensures that the
* event is in the correst state.
*
* UPDATE: We can now use a Queued Event which behaves like a SynchronizationEvent,
* but has better performance. Unfortunately Queued Events cannot cleanly implement
* an EventClear operation. However the EventClear operation is not strictly needed.
*/
/*
* FSP_IOQ_USE_QEVENT
*
* Define this macro to use Queued Events instead of simple SynchronizationEvent's.
*/
#if defined(FSP_IOQ_USE_QEVENT)
#define FspIoqEventInitialize(E) FspQeventInitialize(E, 0)
#define FspIoqEventFinalize(E) FspQeventFinalize(E)
#define FspIoqEventSet(E) FspQeventSetNoLock(E)
#define FspIoqEventCancellableWait(E,T,I) FspQeventCancellableWait(E,T,I)
#define FspIoqEventClear(E) ((VOID)0)
#else
#define FspIoqEventInitialize(E) KeInitializeEvent(E, SynchronizationEvent, FALSE)
#define FspIoqEventFinalize(E) ((VOID)0)
#define FspIoqEventSet(E) KeSetEvent(E, 1, FALSE)
#define FspIoqEventCancellableWait(E,T,I) FsRtlCancellableWaitForSingleObject(E,T,I)
#define FspIoqEventClear(E) KeClearEvent(E)
#endif
/*
* FSP_IOQ_PROCESS_NO_CANCEL
*
@ -136,8 +161,6 @@
* inform it of whether the operation was successful or not. We can only do this reliably
* if we do not allow cancelation after an operation has been started.
*/
#define FSP_IOQ_PROCESS_NO_CANCEL
#if defined(FSP_IOQ_PROCESS_NO_CANCEL)
static NTSTATUS FspCsqInsertIrpEx(PIO_CSQ Csq, PIRP Irp, PIO_CSQ_IRP_CONTEXT Context, PVOID InsertContext)
{
@ -199,10 +222,11 @@ static inline VOID FspIoqPendingResetSynch(FSP_IOQ *Ioq)
*/
if (0 != Ioq->PendingIrpCount || Ioq->Stopped)
/* list is not empty or is stopped; wake up a waiter */
KeSetEvent(&Ioq->PendingIrpEvent, 1, FALSE);
FspIoqEventSet(&Ioq->PendingIrpEvent);
else
/* list is empty and not stopped; future threads should go to sleep */
KeClearEvent(&Ioq->PendingIrpEvent);
/* NOTE: this is not stricly necessary! */
FspIoqEventClear(&Ioq->PendingIrpEvent);
}
static NTSTATUS FspIoqPendingInsertIrpEx(PIO_CSQ IoCsq, PIRP Irp, PVOID InsertContext)
@ -214,7 +238,7 @@ static NTSTATUS FspIoqPendingInsertIrpEx(PIO_CSQ IoCsq, PIRP Irp, PVOID InsertCo
return STATUS_INSUFFICIENT_RESOURCES;
Ioq->PendingIrpCount++;
InsertTailList(&Ioq->PendingIrpList, &Irp->Tail.Overlay.ListEntry);
KeSetEvent(&Ioq->PendingIrpEvent, 1, FALSE);
FspIoqEventSet(&Ioq->PendingIrpEvent);
/* equivalent to FspIoqPendingResetSynch(Ioq) */
return STATUS_SUCCESS;
}
@ -460,7 +484,7 @@ NTSTATUS FspIoqCreate(
RtlZeroMemory(Ioq, PAGE_SIZE);
KeInitializeSpinLock(&Ioq->SpinLock);
KeInitializeEvent(&Ioq->PendingIrpEvent, SynchronizationEvent, FALSE);
FspIoqEventInitialize(&Ioq->PendingIrpEvent);
InitializeListHead(&Ioq->PendingIrpList);
InitializeListHead(&Ioq->ProcessIrpList);
InitializeListHead(&Ioq->RetriedIrpList);
@ -499,6 +523,7 @@ NTSTATUS FspIoqCreate(
VOID FspIoqDelete(FSP_IOQ *Ioq)
{
FspIoqStop(Ioq);
FspIoqEventFinalize(&Ioq->PendingIrpEvent);
FspFree(Ioq);
}
@ -508,7 +533,7 @@ VOID FspIoqStop(FSP_IOQ *Ioq)
KeAcquireSpinLock(&Ioq->SpinLock, &Irql);
Ioq->Stopped = TRUE;
/* we are being stopped, permanently wake up waiters */
KeSetEvent(&Ioq->PendingIrpEvent, 1, FALSE);
FspIoqEventSet(&Ioq->PendingIrpEvent);
/* equivalent to FspIoqPendingResetSynch(Ioq) */
KeReleaseSpinLock(&Ioq->SpinLock, Irql);
PIRP Irp;
@ -577,7 +602,7 @@ PIRP FspIoqNextPendingIrp(FSP_IOQ *Ioq, PIRP BoundaryIrp, PLARGE_INTEGER Timeout
if (0 != Timeout)
{
NTSTATUS Result;
Result = FsRtlCancellableWaitForSingleObject(&Ioq->PendingIrpEvent, Timeout,
Result = FspIoqEventCancellableWait(&Ioq->PendingIrpEvent, Timeout,
CancellableIrp);
if (STATUS_TIMEOUT == Result)
return FspIoqTimeout;