1
0
mirror of https://github.com/bobranten/Ext4Fsd.git synced 2025-10-29 13:18:30 -05:00

remove unused jbd

This commit is contained in:
Vincent Franchomme
2024-11-02 12:44:55 +01:00
parent b0239ca20a
commit 6a6b206ed3
6 changed files with 0 additions and 2990 deletions

View File

@@ -1,7 +0,0 @@
#
# DO NOT EDIT THIS FILE!!! Edit .\sources. if you want to add a new source
# file to this component. This file merely indirects to the real make file
# that is shared by all the driver components of the Windows NT DDK
#
!INCLUDE $(NTMAKEENV)\makefile.def

View File

@@ -1,29 +0,0 @@
#
# Sources for Ext2 file system driver for windows
# mattwu@163.com - http://ext2fsd.sf.net
#
# Name and type of the output file:
MAJORCOMP=ext2fsd
MINORCOMP=jbd
TARGETNAME=jbd
TARGETTYPE=LIBRARY
TARGETPATH=..\$(DDK_TARGET_OS)\$(DDKBUILDENV)\
#
# Visual Studio 6.0 BSC support
# VS6.0 doesn't support new-type BSC generated by WDK
#
!IFDEF BROWSER_INFO_SUPPORTED
USER_C_FLAGS = $(USER_C_FLAGS) /D__KERNEL__ /FR
!ELSE
USER_C_FLAGS = $(USER_C_FLAGS) /D__KERNEL__
!ENDIF
DRIVERTYPE=FS
INCLUDES=..\include;.;$(DRIVER_INC_PATH);
# The source code:
SOURCES=recovery.c replay.c revoke.c

View File

@@ -1 +0,0 @@
This is a port of jbd from the Linux source code, it is unused because the driver is updated to use jbd2.

View File

@@ -1,593 +0,0 @@
/*
* linux/fs/jbd/recovery.c
*
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
*
* Copyright 1999-2000 Red Hat Software --- All Rights Reserved
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* Journal recovery routines for the generic filesystem journaling code;
* part of the ext2fs journaling system.
*/
#ifndef __KERNEL__
#include "jfs_user.h"
#else
#include <linux/module.h>
//#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd.h>
#include <linux/errno.h>
//#include <linux/slab.h>
#endif
/*
* Maintain information about the progress of the recovery job, so that
* the different passes can carry information between them.
*/
struct recovery_info
{
tid_t start_transaction;
tid_t end_transaction;
int nr_replays;
int nr_revokes;
int nr_revoke_hits;
};
enum passtype {PASS_SCAN, PASS_REVOKE, PASS_REPLAY};
static int do_one_pass(journal_t *journal,
struct recovery_info *info, enum passtype pass);
static int scan_revoke_records(journal_t *, struct buffer_head *,
tid_t, struct recovery_info *);
#ifdef __KERNEL__
/* Release readahead buffers after use */
static void journal_brelse_array(struct buffer_head *b[], int n)
{
while (--n >= 0)
brelse (b[n]);
}
/*
* When reading from the journal, we are going through the block device
* layer directly and so there is no readahead being done for us. We
* need to implement any readahead ourselves if we want it to happen at
* all. Recovery is basically one long sequential read, so make sure we
* do the IO in reasonably large chunks.
*
* This is not so critical that we need to be enormously clever about
* the readahead size, though. 128K is a purely arbitrary, good-enough
* fixed value.
*/
#define MAXBUF 8
static int do_readahead(journal_t *journal, unsigned int start)
{
int err;
unsigned int max, nbufs, next;
unsigned long blocknr;
struct buffer_head *bh;
struct buffer_head * bufs[MAXBUF];
/* Do up to 128K of readahead */
max = start + (128 * 1024 / journal->j_blocksize);
if (max > journal->j_maxlen)
max = journal->j_maxlen;
/* Do the readahead itself. We'll submit MAXBUF buffer_heads at
* a time to the block device IO layer. */
nbufs = 0;
for (next = start; next < max; next++) {
err = journal_bmap(journal, next, &blocknr);
if (err) {
printk (KERN_ERR "JBD: bad block at offset %u\n",
next);
goto failed;
}
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh) {
err = -ENOMEM;
goto failed;
}
if (!buffer_uptodate(bh) && !buffer_locked(bh)) {
bufs[nbufs++] = bh;
if (nbufs == MAXBUF) {
ll_rw_block(READ, nbufs, bufs);
journal_brelse_array(bufs, nbufs);
nbufs = 0;
}
} else
brelse(bh);
}
if (nbufs)
ll_rw_block(READ, nbufs, bufs);
err = 0;
failed:
if (nbufs)
journal_brelse_array(bufs, nbufs);
return err;
}
#endif /* __KERNEL__ */
/*
* Read a block from the journal
*/
static int jread(struct buffer_head **bhp, journal_t *journal,
unsigned int offset)
{
int err;
unsigned long blocknr;
struct buffer_head *bh;
*bhp = NULL;
if (offset >= journal->j_maxlen) {
printk(KERN_ERR "JBD: corrupted journal superblock\n");
return -EIO;
}
err = journal_bmap(journal, offset, &blocknr);
if (err) {
printk (KERN_ERR "JBD: bad block at offset %u\n",
offset);
return err;
}
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
if (!bh)
return -ENOMEM;
if (!buffer_uptodate(bh)) {
/* If this is a brand new buffer, start readahead.
Otherwise, we assume we are already reading it. */
if (!buffer_req(bh))
do_readahead(journal, offset);
wait_on_buffer(bh);
}
if (!buffer_uptodate(bh)) {
printk (KERN_ERR "JBD: Failed to read block at offset %u\n",
offset);
brelse(bh);
return -EIO;
}
*bhp = bh;
return 0;
}
/*
* Count the number of in-use tags in a journal descriptor block.
*/
static int count_tags(struct buffer_head *bh, int size)
{
char * tagp;
journal_block_tag_t * tag;
int nr = 0;
tagp = &bh->b_data[sizeof(journal_header_t)];
while (((int)(tagp - bh->b_data) + (int)sizeof(journal_block_tag_t)) <= size) {
tag = (journal_block_tag_t *) tagp;
nr++;
tagp += sizeof(journal_block_tag_t);
if (!(tag->t_flags & cpu_to_be32(JFS_FLAG_SAME_UUID)))
tagp += 16;
if (tag->t_flags & cpu_to_be32(JFS_FLAG_LAST_TAG))
break;
}
return nr;
}
/* Make sure we wrap around the log correctly! */
#define wrap(journal, var) \
do { \
if (var >= (journal)->j_last) \
var -= ((journal)->j_last - (journal)->j_first); \
} while (0)
/**
* journal_recover - recovers a on-disk journal
* @journal: the journal to recover
*
* The primary function for recovering the log contents when mounting a
* journaled device.
*
* Recovery is done in three passes. In the first pass, we look for the
* end of the log. In the second, we assemble the list of revoke
* blocks. In the third and final pass, we replay any un-revoked blocks
* in the log.
*/
int journal_recover(journal_t *journal)
{
int err;
journal_superblock_t * sb;
struct recovery_info info;
memset(&info, 0, sizeof(info));
sb = journal->j_superblock;
/*
* The journal superblock's s_start field (the current log head)
* is always zero if, and only if, the journal was cleanly
* unmounted.
*/
if (!sb->s_start) {
jbd_debug(1, "No recovery required, last transaction %d\n",
be32_to_cpu(sb->s_sequence));
journal->j_transaction_sequence = be32_to_cpu(sb->s_sequence) + 1;
return 0;
}
err = do_one_pass(journal, &info, PASS_SCAN);
if (!err)
err = do_one_pass(journal, &info, PASS_REVOKE);
if (!err)
err = do_one_pass(journal, &info, PASS_REPLAY);
jbd_debug(1, "JBD: recovery, exit status %d, "
"recovered transactions %u to %u\n",
err, info.start_transaction, info.end_transaction);
jbd_debug(1, "JBD: Replayed %d and revoked %d/%d blocks\n",
info.nr_replays, info.nr_revoke_hits, info.nr_revokes);
/* Restart the log at the next transaction ID, thus invalidating
* any existing commit records in the log. */
journal->j_transaction_sequence = ++info.end_transaction;
journal_clear_revoke(journal);
sync_blockdev(journal->j_fs_dev);
return err;
}
/**
* journal_skip_recovery - Start journal and wipe exiting records
* @journal: journal to startup
*
* Locate any valid recovery information from the journal and set up the
* journal structures in memory to ignore it (presumably because the
* caller has evidence that it is out of date).
* This function does'nt appear to be exorted..
*
* We perform one pass over the journal to allow us to tell the user how
* much recovery information is being erased, and to let us initialise
* the journal transaction sequence numbers to the next unused ID.
*/
int journal_skip_recovery(journal_t *journal)
{
int err;
journal_superblock_t * sb;
struct recovery_info info;
memset (&info, 0, sizeof(info));
sb = journal->j_superblock;
err = do_one_pass(journal, &info, PASS_SCAN);
if (err) {
printk(KERN_ERR "JBD: error %d scanning journal\n", err);
++journal->j_transaction_sequence;
} else {
#ifdef CONFIG_JBD_DEBUG
int dropped = info.end_transaction - be32_to_cpu(sb->s_sequence);
jbd_debug(1,
"JBD: ignoring %d transaction%s from the journal.\n",
dropped, (dropped == 1) ? "" : "s");
#endif
journal->j_transaction_sequence = ++info.end_transaction;
}
journal->j_tail = 0;
return err;
}
static int do_one_pass(journal_t *journal,
struct recovery_info *info, enum passtype pass)
{
unsigned int first_commit_ID, next_commit_ID;
unsigned long next_log_block;
int err, success = 0;
journal_superblock_t * sb;
journal_header_t * tmp;
struct buffer_head * bh;
unsigned int sequence;
int blocktype;
/* Precompute the maximum metadata descriptors in a descriptor block */
int MAX_BLOCKS_PER_DESC;
MAX_BLOCKS_PER_DESC = ((journal->j_blocksize-sizeof(journal_header_t))
/ sizeof(journal_block_tag_t));
/*
* First thing is to establish what we expect to find in the log
* (in terms of transaction IDs), and where (in terms of log
* block offsets): query the superblock.
*/
sb = journal->j_superblock;
next_commit_ID = be32_to_cpu(sb->s_sequence);
next_log_block = be32_to_cpu(sb->s_start);
first_commit_ID = next_commit_ID;
if (pass == PASS_SCAN)
info->start_transaction = first_commit_ID;
jbd_debug(1, "Starting recovery pass %d\n", pass);
/*
* Now we walk through the log, transaction by transaction,
* making sure that each transaction has a commit block in the
* expected place. Each complete transaction gets replayed back
* into the main filesystem.
*/
while (1) {
int flags;
char * tagp;
journal_block_tag_t * tag;
struct buffer_head * obh;
struct buffer_head * nbh;
cond_resched();
/* If we already know where to stop the log traversal,
* check right now that we haven't gone past the end of
* the log. */
if (pass != PASS_SCAN)
if (tid_geq(next_commit_ID, info->end_transaction))
break;
jbd_debug(2, "Scanning for sequence ID %u at %lu/%lu\n",
next_commit_ID, next_log_block, journal->j_last);
/* Skip over each chunk of the transaction looking
* either the next descriptor block or the final commit
* record. */
jbd_debug(3, "JBD: checking block %ld\n", next_log_block);
err = jread(&bh, journal, next_log_block);
if (err)
goto failed;
next_log_block++;
wrap(journal, next_log_block);
/* What kind of buffer is it?
*
* If it is a descriptor block, check that it has the
* expected sequence number. Otherwise, we're all done
* here. */
tmp = (journal_header_t *)bh->b_data;
if (tmp->h_magic != cpu_to_be32(JFS_MAGIC_NUMBER)) {
brelse(bh);
break;
}
blocktype = be32_to_cpu(tmp->h_blocktype);
sequence = be32_to_cpu(tmp->h_sequence);
jbd_debug(3, "Found magic %d, sequence %d\n",
blocktype, sequence);
if (sequence != next_commit_ID) {
brelse(bh);
break;
}
/* OK, we have a valid descriptor block which matches
* all of the sequence number checks. What are we going
* to do with it? That depends on the pass... */
switch (blocktype) {
case JFS_DESCRIPTOR_BLOCK:
/* If it is a valid descriptor block, replay it
* in pass REPLAY; otherwise, just skip over the
* blocks it describes. */
if (pass != PASS_REPLAY) {
next_log_block +=
count_tags(bh, journal->j_blocksize);
wrap(journal, next_log_block);
brelse(bh);
continue;
}
/* A descriptor block: we can now write all of
* the data blocks. Yay, useful work is finally
* getting done here! */
tagp = &bh->b_data[sizeof(journal_header_t)];
while (((int)(tagp - bh->b_data) + (int)sizeof(journal_block_tag_t))
<= journal->j_blocksize) {
unsigned long io_block;
tag = (journal_block_tag_t *) tagp;
flags = be32_to_cpu(tag->t_flags);
io_block = next_log_block++;
wrap(journal, next_log_block);
err = jread(&obh, journal, io_block);
if (err) {
/* Recover what we can, but
* report failure at the end. */
success = err;
printk (KERN_ERR
"JBD: IO error %d recovering "
"block %ld in log\n",
err, io_block);
} else {
unsigned long blocknr;
J_ASSERT(obh != NULL);
blocknr = be32_to_cpu(tag->t_blocknr);
/* If the block has been
* revoked, then we're all done
* here. */
if (journal_test_revoke
(journal, blocknr,
next_commit_ID)) {
brelse(obh);
++info->nr_revoke_hits;
goto skip_write;
}
/* Find a buffer for the new
* data being restored */
nbh = __getblk(journal->j_fs_dev,
blocknr,
journal->j_blocksize);
if (nbh == NULL) {
printk(KERN_ERR
"JBD: Out of memory "
"during recovery.\n");
err = -ENOMEM;
brelse(bh);
brelse(obh);
goto failed;
}
lock_buffer(nbh);
memcpy(nbh->b_data, obh->b_data,
journal->j_blocksize);
if (flags & JFS_FLAG_ESCAPE) {
*((__be32 *)bh->b_data) =
cpu_to_be32(JFS_MAGIC_NUMBER);
}
BUFFER_TRACE(nbh, "marking dirty");
set_buffer_uptodate(nbh);
mark_buffer_dirty(nbh);
BUFFER_TRACE(nbh, "marking uptodate");
++info->nr_replays;
/* ll_rw_block(WRITE, 1, &nbh); */
unlock_buffer(nbh);
brelse(obh);
brelse(nbh);
}
skip_write:
tagp += sizeof(journal_block_tag_t);
if (!(flags & JFS_FLAG_SAME_UUID))
tagp += 16;
if (flags & JFS_FLAG_LAST_TAG)
break;
}
brelse(bh);
continue;
case JFS_COMMIT_BLOCK:
/* Found an expected commit block: not much to
* do other than move on to the next sequence
* number. */
brelse(bh);
next_commit_ID++;
continue;
case JFS_REVOKE_BLOCK:
/* If we aren't in the REVOKE pass, then we can
* just skip over this block. */
if (pass != PASS_REVOKE) {
brelse(bh);
continue;
}
err = scan_revoke_records(journal, bh,
next_commit_ID, info);
brelse(bh);
if (err)
goto failed;
continue;
default:
jbd_debug(3, "Unrecognised magic %d, end of scan.\n",
blocktype);
brelse(bh);
goto done;
}
}
done:
/*
* We broke out of the log scan loop: either we came to the
* known end of the log or we found an unexpected block in the
* log. If the latter happened, then we know that the "current"
* transaction marks the end of the valid log.
*/
if (pass == PASS_SCAN)
info->end_transaction = next_commit_ID;
else {
/* It's really bad news if different passes end up at
* different places (but possible due to IO errors). */
if (info->end_transaction != next_commit_ID) {
printk (KERN_ERR "JBD: recovery pass %d ended at "
"transaction %u, expected %u\n",
pass, next_commit_ID, info->end_transaction);
if (!success)
success = -EIO;
}
}
return success;
failed:
return err;
}
/* Scan a revoke record, marking all blocks mentioned as revoked. */
static int scan_revoke_records(journal_t *journal, struct buffer_head *bh,
tid_t sequence, struct recovery_info *info)
{
journal_revoke_header_t *header;
int offset, max;
header = (journal_revoke_header_t *) bh->b_data;
offset = sizeof(journal_revoke_header_t);
max = be32_to_cpu(header->r_count);
while (offset < max) {
unsigned long blocknr;
int err;
blocknr = be32_to_cpu(* ((__be32 *) (bh->b_data+offset)));
offset += 4;
err = journal_set_revoke(journal, blocknr, sequence);
if (err)
return err;
++info->nr_revokes;
}
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,706 +0,0 @@
/*
* linux/fs/jbd/revoke.c
*
* Written by Stephen C. Tweedie <sct@redhat.com>, 2000
*
* Copyright 2000 Red Hat corp --- All Rights Reserved
*
* This file is part of the Linux kernel and is made available under
* the terms of the GNU General Public License, version 2, or at your
* option, any later version, incorporated herein by reference.
*
* Journal revoke routines for the generic filesystem journaling code;
* part of the ext2fs journaling system.
*
* Revoke is the mechanism used to prevent old log records for deleted
* metadata from being replayed on top of newer data using the same
* blocks. The revoke mechanism is used in two separate places:
*
* + Commit: during commit we write the entire list of the current
* transaction's revoked blocks to the journal
*
* + Recovery: during recovery we record the transaction ID of all
* revoked blocks. If there are multiple revoke records in the log
* for a single block, only the last one counts, and if there is a log
* entry for a block beyond the last revoke, then that log entry still
* gets replayed.
*
* We can get interactions between revokes and new log data within a
* single transaction:
*
* Block is revoked and then journaled:
* The desired end result is the journaling of the new block, so we
* cancel the revoke before the transaction commits.
*
* Block is journaled and then revoked:
* The revoke must take precedence over the write of the block, so we
* need either to cancel the journal entry or to write the revoke
* later in the log than the log block. In this case, we choose the
* latter: journaling a block cancels any revoke record for that block
* in the current transaction, so any revoke for that block in the
* transaction must have happened after the block was journaled and so
* the revoke must take precedence.
*
* Block is revoked and then written as data:
* The data write is allowed to succeed, but the revoke is _not_
* cancelled. We still need to prevent old log records from
* overwriting the new data. We don't even need to clear the revoke
* bit here.
*
* Revoke information on buffers is a tri-state value:
*
* RevokeValid clear: no cached revoke status, need to look it up
* RevokeValid set, Revoked clear:
* buffer has not been revoked, and cancel_revoke
* need do nothing.
* RevokeValid set, Revoked set:
* buffer has been revoked.
*/
#ifndef __KERNEL__
#include "jfs_user.h"
#else
//#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd.h>
#include <linux/errno.h>
//#include <linux/slab.h>
#include <linux/list.h>
//#include <linux/init.h>
#endif
#include <linux/log2.h>
static struct kmem_cache *revoke_record_cache = NULL;
static struct kmem_cache *revoke_table_cache = NULL;
/* Each revoke record represents one single revoked block. During
journal replay, this involves recording the transaction ID of the
last transaction to revoke this block. */
struct jbd_revoke_record_s
{
struct list_head hash;
tid_t sequence; /* Used for recovery only */
unsigned long blocknr;
};
/* The revoke table is just a simple hash table of revoke records. */
struct jbd_revoke_table_s
{
/* It is conceivable that we might want a larger hash table
* for recovery. Must be a power of two. */
int hash_size;
int hash_shift;
struct list_head *hash_table;
};
#ifdef __KERNEL__
static void write_one_revoke_record(journal_t *, transaction_t *,
struct journal_head **, int *,
struct jbd_revoke_record_s *);
static void flush_descriptor(journal_t *, struct journal_head *, int);
#endif
/* Utility functions to maintain the revoke table */
/* Borrowed from buffer.c: this is a tried and tested block hash function */
static inline int hash(journal_t *journal, unsigned long block)
{
struct jbd_revoke_table_s *table = journal->j_revoke;
int hash_shift = table->hash_shift;
return ((block << (hash_shift - 6)) ^
(block >> 13) ^
(block << (hash_shift - 12))) & (table->hash_size - 1);
}
static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
tid_t seq)
{
struct list_head *hash_list;
struct jbd_revoke_record_s *record;
repeat:
record = (struct jbd_revoke_record_s *)
kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
if (!record)
goto oom;
record->sequence = seq;
record->blocknr = blocknr;
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
jbd_lock(&journal->j_revoke_lock);
list_add(&record->hash, hash_list);
jbd_unlock(&journal->j_revoke_lock);
return 0;
oom:
if (!journal_oom_retry)
return -ENOMEM;
jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__);
yield();
goto repeat;
}
/* Find a revoke record in the journal's hash table. */
static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
unsigned long blocknr)
{
struct list_head *hash_list;
struct jbd_revoke_record_s *record;
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
jbd_lock(&journal->j_revoke_lock);
record = (struct jbd_revoke_record_s *) hash_list->next;
while (&(record->hash) != hash_list) {
if (record->blocknr == blocknr) {
jbd_unlock(&journal->j_revoke_lock);
return record;
}
record = (struct jbd_revoke_record_s *) record->hash.next;
}
jbd_unlock(&journal->j_revoke_lock);
return NULL;
}
int __init journal_init_revoke_caches(void)
{
revoke_record_cache = kmem_cache_create("revoke_record",
sizeof(struct jbd_revoke_record_s),
0,
SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
NULL);
if (revoke_record_cache == 0)
return -ENOMEM;
revoke_table_cache = kmem_cache_create("revoke_table",
sizeof(struct jbd_revoke_table_s),
0, SLAB_TEMPORARY, NULL);
if (revoke_table_cache == 0) {
kmem_cache_destroy(revoke_record_cache);
revoke_record_cache = NULL;
return -ENOMEM;
}
return 0;
}
void journal_destroy_revoke_caches(void)
{
kmem_cache_destroy(revoke_record_cache);
revoke_record_cache = NULL;
kmem_cache_destroy(revoke_table_cache);
revoke_table_cache = NULL;
}
/* Initialise the revoke table for a given journal to a given size. */
int journal_init_revoke(journal_t *journal, int hash_size)
{
int shift, tmp;
J_ASSERT (journal->j_revoke_table[0] == NULL);
shift = 0;
tmp = hash_size;
while ((tmp >>= 1UL) != 0UL)
shift++;
journal->j_revoke_table[0] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
if (!journal->j_revoke_table[0])
return -ENOMEM;
journal->j_revoke = journal->j_revoke_table[0];
/* Check that the hash_size is a power of two */
J_ASSERT(is_power_of_2(hash_size));
journal->j_revoke->hash_size = hash_size;
journal->j_revoke->hash_shift = shift;
journal->j_revoke->hash_table =
kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
if (!journal->j_revoke->hash_table) {
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
journal->j_revoke = NULL;
return -ENOMEM;
}
for (tmp = 0; tmp < hash_size; tmp++)
INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
journal->j_revoke_table[1] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
if (!journal->j_revoke_table[1]) {
kfree(journal->j_revoke_table[0]->hash_table);
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
return -ENOMEM;
}
journal->j_revoke = journal->j_revoke_table[1];
/* Check that the hash_size is a power of two */
J_ASSERT(is_power_of_2(hash_size));
journal->j_revoke->hash_size = hash_size;
journal->j_revoke->hash_shift = shift;
journal->j_revoke->hash_table =
kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
if (!journal->j_revoke->hash_table) {
kfree(journal->j_revoke_table[0]->hash_table);
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[1]);
journal->j_revoke = NULL;
return -ENOMEM;
}
for (tmp = 0; tmp < hash_size; tmp++)
INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
jbd_lock_init(&journal->j_revoke_lock);
return 0;
}
/* Destoy a journal's revoke table. The table must already be empty! */
void journal_destroy_revoke(journal_t *journal)
{
struct jbd_revoke_table_s *table;
struct list_head *hash_list;
int i;
table = journal->j_revoke_table[0];
if (!table)
return;
for (i=0; i<table->hash_size; i++) {
hash_list = &table->hash_table[i];
J_ASSERT (list_empty(hash_list));
}
kfree(table->hash_table);
kmem_cache_free(revoke_table_cache, table);
journal->j_revoke = NULL;
table = journal->j_revoke_table[1];
if (!table)
return;
for (i=0; i<table->hash_size; i++) {
hash_list = &table->hash_table[i];
J_ASSERT (list_empty(hash_list));
}
kfree(table->hash_table);
kmem_cache_free(revoke_table_cache, table);
journal->j_revoke = NULL;
}
#ifdef __KERNEL__
/*
* journal_revoke: revoke a given buffer_head from the journal. This
* prevents the block from being replayed during recovery if we take a
* crash after this current transaction commits. Any subsequent
* metadata writes of the buffer in this transaction cancel the
* revoke.
*
* Note that this call may block --- it is up to the caller to make
* sure that there are no further calls to journal_write_metadata
* before the revoke is complete. In ext3, this implies calling the
* revoke before clearing the block bitmap when we are deleting
* metadata.
*
* Revoke performs a journal_forget on any buffer_head passed in as a
* parameter, but does _not_ forget the buffer_head if the bh was only
* found implicitly.
*
* bh_in may not be a journalled buffer - it may have come off
* the hash tables without an attached journal_head.
*
* If bh_in is non-zero, journal_revoke() will decrement its b_count
* by one.
*/
int journal_revoke(handle_t *handle, unsigned long blocknr,
struct buffer_head *bh_in)
{
struct buffer_head *bh = NULL;
journal_t *journal;
struct block_device *bdev;
int err;
might_sleep();
if (bh_in)
BUFFER_TRACE(bh_in, "enter");
journal = handle->h_transaction->t_journal;
if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) {
J_ASSERT (!"Cannot set revoke feature!");
return -EINVAL;
}
bdev = journal->j_fs_dev;
bh = bh_in;
if (!bh) {
bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
if (bh)
BUFFER_TRACE(bh, "found on hash");
}
#ifdef JBD_EXPENSIVE_CHECKING
else {
struct buffer_head *bh2;
/* If there is a different buffer_head lying around in
* memory anywhere... */
bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
if (bh2) {
/* ... and it has RevokeValid status... */
if (bh2 != bh && buffer_revokevalid(bh2))
/* ...then it better be revoked too,
* since it's illegal to create a revoke
* record against a buffer_head which is
* not marked revoked --- that would
* risk missing a subsequent revoke
* cancel. */
J_ASSERT_BH(bh2, buffer_revoked(bh2));
put_bh(bh2);
}
}
#endif
/* We really ought not ever to revoke twice in a row without
first having the revoke cancelled: it's illegal to free a
block twice without allocating it in between! */
if (bh) {
if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
"inconsistent data on disk")) {
if (!bh_in)
brelse(bh);
return -EIO;
}
set_buffer_revoked(bh);
set_buffer_revokevalid(bh);
if (bh_in) {
BUFFER_TRACE(bh_in, "call journal_forget");
journal_forget(handle, bh_in);
} else {
BUFFER_TRACE(bh, "call brelse");
__brelse(bh);
}
}
jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
err = insert_revoke_hash(journal, blocknr,
handle->h_transaction->t_tid);
BUFFER_TRACE(bh_in, "exit");
return err;
}
/*
* Cancel an outstanding revoke. For use only internally by the
* journaling code (called from journal_get_write_access).
*
* We trust buffer_revoked() on the buffer if the buffer is already
* being journaled: if there is no revoke pending on the buffer, then we
* don't do anything here.
*
* This would break if it were possible for a buffer to be revoked and
* discarded, and then reallocated within the same transaction. In such
* a case we would have lost the revoked bit, but when we arrived here
* the second time we would still have a pending revoke to cancel. So,
* do not trust the Revoked bit on buffers unless RevokeValid is also
* set.
*
* The caller must have the journal locked.
*/
int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
{
struct jbd_revoke_record_s *record;
journal_t *journal = handle->h_transaction->t_journal;
int need_cancel;
int did_revoke = 0; /* akpm: debug */
struct buffer_head *bh = jh2bh(jh);
jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
/* Is the existing Revoke bit valid? If so, we trust it, and
* only perform the full cancel if the revoke bit is set. If
* not, we can't trust the revoke bit, and we need to do the
* full search for a revoke record. */
if (test_set_buffer_revokevalid(bh)) {
need_cancel = test_clear_buffer_revoked(bh);
} else {
need_cancel = 1;
clear_buffer_revoked(bh);
}
if (need_cancel) {
record = find_revoke_record(journal, (unsigned long)bh->b_blocknr);
if (record) {
jbd_debug(4, "cancelled existing revoke on "
"blocknr %llu\n", (u64)bh->b_blocknr);
jbd_lock(&journal->j_revoke_lock);
list_del(&record->hash);
jbd_unlock(&journal->j_revoke_lock);
kmem_cache_free(revoke_record_cache, record);
did_revoke = 1;
}
}
#ifdef JBD_EXPENSIVE_CHECKING
/* There better not be one left behind by now! */
record = find_revoke_record(journal, bh->b_blocknr);
J_ASSERT_JH(jh, record == NULL);
#endif
/* Finally, have we just cleared revoke on an unhashed
* buffer_head? If so, we'd better make sure we clear the
* revoked status on any hashed alias too, otherwise the revoke
* state machine will get very upset later on. */
if (need_cancel) {
struct buffer_head *bh2;
bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
if (bh2) {
if (bh2 != bh)
clear_buffer_revoked(bh2);
__brelse(bh2);
}
}
return did_revoke;
}
/* journal_switch_revoke table select j_revoke for next transaction
* we do not want to suspend any processing until all revokes are
* written -bzzz
*/
void journal_switch_revoke_table(journal_t *journal)
{
int i;
if (journal->j_revoke == journal->j_revoke_table[0])
journal->j_revoke = journal->j_revoke_table[1];
else
journal->j_revoke = journal->j_revoke_table[0];
for (i = 0; i < journal->j_revoke->hash_size; i++)
INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
}
/*
* Write revoke records to the journal for all entries in the current
* revoke hash, deleting the entries as we go.
*
* Called with the journal lock held.
*/
void journal_write_revoke_records(journal_t *journal,
transaction_t *transaction)
{
struct journal_head *descriptor;
struct jbd_revoke_record_s *record;
struct jbd_revoke_table_s *revoke;
struct list_head *hash_list;
int i, offset, count;
descriptor = NULL;
offset = 0;
count = 0;
/* select revoke table for committing transaction */
revoke = journal->j_revoke == journal->j_revoke_table[0] ?
journal->j_revoke_table[1] : journal->j_revoke_table[0];
for (i = 0; i < revoke->hash_size; i++) {
hash_list = &revoke->hash_table[i];
while (!list_empty(hash_list)) {
record = (struct jbd_revoke_record_s *)
hash_list->next;
write_one_revoke_record(journal, transaction,
&descriptor, &offset,
record);
count++;
list_del(&record->hash);
kmem_cache_free(revoke_record_cache, record);
}
}
if (descriptor)
flush_descriptor(journal, descriptor, offset);
jbd_debug(1, "Wrote %d revoke records\n", count);
}
/*
* Write out one revoke record. We need to create a new descriptor
* block if the old one is full or if we have not already created one.
*/
static void write_one_revoke_record(journal_t *journal,
transaction_t *transaction,
struct journal_head **descriptorp,
int *offsetp,
struct jbd_revoke_record_s *record)
{
struct journal_head *descriptor;
int offset;
journal_header_t *header;
/* If we are already aborting, this all becomes a noop. We
still need to go round the loop in
journal_write_revoke_records in order to free all of the
revoke records: only the IO to the journal is omitted. */
if (is_journal_aborted(journal))
return;
descriptor = *descriptorp;
offset = *offsetp;
/* Make sure we have a descriptor with space left for the record */
if (descriptor) {
if (offset == journal->j_blocksize) {
flush_descriptor(journal, descriptor, offset);
descriptor = NULL;
}
}
if (!descriptor) {
descriptor = journal_get_descriptor_buffer(journal);
if (!descriptor)
return;
header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
header->h_sequence = cpu_to_be32(transaction->t_tid);
/* Record it so that we can wait for IO completion later */
JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
journal_file_buffer(descriptor, transaction, BJ_LogCtl);
offset = sizeof(journal_revoke_header_t);
*descriptorp = descriptor;
}
* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
cpu_to_be32(record->blocknr);
offset += 4;
*offsetp = offset;
}
/*
* Flush a revoke descriptor out to the journal. If we are aborting,
* this is a noop; otherwise we are generating a buffer which needs to
* be waited for during commit, so it has to go onto the appropriate
* journal buffer list.
*/
static void flush_descriptor(journal_t *journal,
struct journal_head *descriptor,
int offset)
{
journal_revoke_header_t *header;
struct buffer_head *bh = jh2bh(descriptor);
if (is_journal_aborted(journal)) {
put_bh(bh);
return;
}
header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
header->r_count = cpu_to_be32(offset);
set_buffer_jwrite(bh);
BUFFER_TRACE(bh, "write");
set_buffer_dirty(bh);
ll_rw_block(SWRITE, 1, &bh);
}
#endif
/*
* Revoke support for recovery.
*
* Recovery needs to be able to:
*
* record all revoke records, including the tid of the latest instance
* of each revoke in the journal
*
* check whether a given block in a given transaction should be replayed
* (ie. has not been revoked by a revoke record in that or a subsequent
* transaction)
*
* empty the revoke table after recovery.
*/
/*
* First, setting revoke records. We create a new revoke record for
* every block ever revoked in the log as we scan it for recovery, and
* we update the existing records if we find multiple revokes for a
* single block.
*/
int journal_set_revoke(journal_t *journal,
unsigned long blocknr,
tid_t sequence)
{
struct jbd_revoke_record_s *record;
record = find_revoke_record(journal, blocknr);
if (record) {
/* If we have multiple occurrences, only record the
* latest sequence number in the hashed record */
if (tid_gt(sequence, record->sequence))
record->sequence = sequence;
return 0;
}
return insert_revoke_hash(journal, blocknr, sequence);
}
/*
* Test revoke records. For a given block referenced in the log, has
* that block been revoked? A revoke record with a given transaction
* sequence number revokes all blocks in that transaction and earlier
* ones, but later transactions still need replayed.
*/
int journal_test_revoke(journal_t *journal,
unsigned long blocknr,
tid_t sequence)
{
struct jbd_revoke_record_s *record;
record = find_revoke_record(journal, blocknr);
if (!record)
return 0;
if (tid_gt(sequence, record->sequence))
return 0;
return 1;
}
/*
* Finally, once recovery is over, we need to clear the revoke table so
* that it can be reused by the running filesystem.
*/
void journal_clear_revoke(journal_t *journal)
{
int i;
struct list_head *hash_list;
struct jbd_revoke_record_s *record;
struct jbd_revoke_table_s *revoke;
revoke = journal->j_revoke;
for (i = 0; i < revoke->hash_size; i++) {
hash_list = &revoke->hash_table[i];
while (!list_empty(hash_list)) {
record = (struct jbd_revoke_record_s*) hash_list->next;
list_del(&record->hash);
kmem_cache_free(revoke_record_cache, record);
}
}
}